IOWA State University

Digital Repository

Determinants of debt and liquidity in a firm

Phillip Murray Johnson
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd
Part of the Economics Commons

Recommended Citation

Johnson, Phillip Murray, "Determinants of debt and liquidity in a firm" (1965). Retrospective Theses and Dissertations. 16516.
https://lib.dr.iastate.edu/rtd/16516DETERMINANTS OF DEBT AND LIQUIDITY IN A FIRM by

Ph11lip Murray Johnson

A Thesis Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of MASTER OF SCIENCE

Major Subject: General Economies

Signatures have been redacted for privacy
HG 174
sealed TABLE OF CONTENTS
c. 2 Page
INTRODUCTION 1
FUND-FLOW ANALYSIS OP A FIRM 2
Introduction 2
The Financial Statements in Mathematical Notation 2
Cash Transactions of the Firm 5
Summary 10
Digression on Cash Balances 11
Cash Flows between the FIrm and the Money Market 15
Debt Structure and Money Market Transactions 25
Summary 32
Non-Pinancial Plows 32
Summary 36
A THEORY OF FINANCIAL DECISIONS 38
The Theory 38
Safe Debt and Necessary Liquidity 50
THE STATISTICAL MODEL AND THE HYPOTHESES 58
The General Statistical Model 58
The Specific Statistical Model 59
The Hypothesis 62
The change in short-term bank debt 62
The change in short-term other debt 64
The change in long-term debt 65
The change in cash 65
The change in debt in general 67
REGRESSION RESULTS 68
The Dependent Variables 68
The Role of the Independent Variables 70
The change in short-term bank debt 71
The change in short-term other debt $7 ?$
The change in long-term debt 78
The change in cash balances 78
The change in debt in general 79
A Qualification to the Results 79
CONCLUSION 87
BIBLICORAPHY T17359 89

111

Page
ACKNOWLEDGMENT 91
APPENDIX A 92
Glossary of Symbols Used 92
APPENDIX B 95
Transactions Affecting Cash 95
APPENDIX C 114
Regression Results, $t=1,2,3, \ldots, 90$ 114

LIST OF TABLES

Table Page
1 Transaotions affeoting oash, 1952 and 1953 8
2 $F^{\prime} s$ and $B^{21} s, t=1,2,3, \ldots, 108$ 68
3 Estimated coefficients of independent vari- ables where $r=1,2,3, \ldots, 6$ and $t=1$, 2, 3, ..., 108 72
4 Correlation matrix where $t=1,2,3, \ldots, 108$ 74
5 Transactions affecting cash, 1947-1964 96
$6 \quad F^{\prime}$ s and R^{21} s, $t=1,2,3, \ldots, 90$ 114
7 Estimated coefficients of independent vari- ables where $r=1,2,3, \ldots, 6$ and $t=1$, 2, 3, ..., 90 115
8 Correlation matrix where $t=1,2,3, \ldots, 90$ 117

LIST OF FTGURES

Figure Page
1 Cash balances 13
2 Business transactions and sales 16
3 Excesses of business receipts over business payments 18
4 Excesses within business transactions 19
5 Inventories and accounts payable 23
6 Structure of aebt 28
7 Changes in debt 30
8 Net change in current non-finanoial assets 35
9 Converging situation 48
10 Diverging situation 48
11 Monotonically converging situation 49
12 Possible relationships between B and $B_{c o n}$ 49
13 The change in short-term bonk debt 81
14 The change in short-term other debt 82
15 The change in long-term debt 83
16 The change in cash 84
17 The change in short-term debt 85
18 The change in debt in general 86

INTRODUCTION

The purpose of this study is to test a theory of financial decision-making for the individual firm. The theory is based upon the concepts of safe debt and necessary liquidity when compared with actual debt and actual Iiquidity. Though it is not possible to specify exact values of safe debt and necessary iiquidity, it is possible to specify the determinants of each. If the firm responds to the levels of safe debt and necessary liquidity, it must also be responding to the determinants of each. Thus, it is possible to test the theory by measuring the firm's response to changes in actual debt and iiquidity and to changes in the determinants of safe debt and liquidity.

The firm used in this study will not be named. It is a small to medium-sized lumber and building materials wholesale firm located in Des Moines, Iowa. The data in this study came from the firm's annual and monthly financial records and has not been changed in any manner such as deseasonalizing, etc.

The following chapter will be a fund-flow analysis of the firm over the period 1947-1964. After some insight into the firm has been gained, the theory of financial decisionmaking will be presented. Following that, the theory will be tested and the results discussed.

FUND-FLOW ANALYSIS OP A FIRM

Introduction
It is generally accepted that as a firm enters into and passes through an upswing in economic activity, it will call upon outside sources for additional amounts of money. This is because it tries to have its earning assets as large as possible when the probability of making increased profits is large.

The purpose of this chapter is to develop a mechanism to describe and analyze these flows. Also, it will endeavor to Eive some explanation of these flows as they have appeared In the years 1947-1964 for a particular firm. Most studies of these flows have been of firms whose flows and sales behaved oyclically (17). The firm analyzed here differs from the firms used in similar studies in that it has had, with the exoeption of one year, ever increasing sales over the period 1947-1964. It is also atypical in that it has experienced diffioulty in borrowing long-term funds.

The Financial Statements
in Mathematical Notation

In most accounting books one of the first things a student leams is the idea of double entry. This merely means that for every debit there is an equal and opposite credit or credits. In the balance sheet this is refleoted by
equality between total assets on the one side and total liablilities plus the capital accounts on the other. The income statement equates net sales and other income with costs and expenses, plus retained earnings.

A simplified balance sheet can be written as
(2-1) $\quad C_{t}+G_{t}+O C A_{t}+N P A_{t}+O A_{t}=D_{s_{t}}+O C L_{t}+D_{L_{t}}+$

$$
I P S_{t}+E S_{t}
$$

where:

$$
\begin{aligned}
& c_{t}=\text { cash at the end of } t \text {, } \\
& a_{t}=\text { government securities at the end of } t \text {, } \\
& O C A_{t}=\text { current assets excluding cash and } \\
& \text { government securities at the end of } t \text {, } \\
& \mathrm{NFA}_{t}=\text { net fixed assets at the end of } t \text {, } \\
& \mathrm{OA}_{t}=\text { other assets at the end of } t \text {, } \\
& D_{s_{t}}=\text { short-term debt at the end of } t \text {, } \\
& \mathrm{OCL}_{\mathrm{t}}=\text { other current liabilities at the end of } t \text {, } \\
& D_{L_{t}}=\text { long-term debt at the end of } t \text {, } \\
& \text { IPS }_{t}=1 \text { issued and pald-1n surplus at the end of } \\
& \text { t, and }
\end{aligned}
$$

$$
E S_{t}=\text { earned surplus at the end of } t .1
$$

The simplified income statement can be written as,
$(2-2) \quad \mathrm{NSOI}_{\mathrm{t}}=C \& E_{\mathrm{t}}+\operatorname{DeP}_{\mathrm{t}}+\operatorname{RED}_{\mathrm{t}}$
where:

$$
\begin{aligned}
\mathrm{NSOI}_{t}= & \text { net sales and other income during } \\
& \text { period } t, \\
\operatorname{Dep}_{t}= & \text { depreciation during } t, \\
C \& E_{t}= & \text { costs and expenses during } t, \text { and } \\
\operatorname{RED}_{t}= & \text { retained earnings during } t .
\end{aligned}
$$

Equation 2-1 is an equation of stock variables and Equation 2-2 is an equation of flow variables. Equation 2-1 could have been written for the end of the previous period (or the beginning of period t) by inserting t-1 for t. Then Equation 2-1 for period t minus Equation 2-1 for period t-1 will be a difference equation,
$(2-3) \quad\left(c_{t}-c_{t-1}\right)+\left(\sigma_{t}-a_{t-1}\right)+\left(O C A_{t}-O C A_{t-1}\right)+$

$$
\begin{aligned}
& \left(N F A_{t}-N P A_{t-1}\right)+\left(O A_{t}-O A_{t-1}\right)=\left(D_{s_{t}}-D_{s_{t-1}}\right)+ \\
& \left(O C L_{t}-O C L_{t-1}\right)+\left(D_{L_{t}}-D_{L_{t-1}}\right)+\left(I P S_{t}-I P S_{t-1}\right)+ \\
& \left(E S_{t}-E S_{t-1}\right)
\end{aligned}
$$

${ }^{1}$ In developing the fund-flow analysis and the theory of finanoial decisions many different symbols are used. A glossary of symbols used is contained in Appendix A for a central place to refer to if it is forgotten what one symbol represents.

Equation 2-3 1ike Equation 2-2 is composed of flow varlables. The term $\left(c_{t}-c_{t-1}\right)$ may be written as Δc_{t}, the change in eash auring period t. The other components in parenthesis of Equation 2-3 can be written similarily.

Equation $2-3$, rewritten using " Δ " signs, can be added to Equation 2-2 to obtain,

$$
\begin{aligned}
\text { (2-4) } \quad C B E_{t} & +D e P_{t}+B E D_{t}+\Delta C_{t}+\Delta O_{t}+\Delta O C A_{t}+\Delta V F A_{t}+ \\
\Delta O A_{t} & =N S O I_{t}+\Delta D_{S_{t}}+\Delta O C L_{t}+\Delta D_{L_{t}}+\Delta P S_{t}+\Delta E S_{t} .
\end{aligned}
$$

Hence,
$(2-5) \quad \Delta C_{t}=N S O I_{t}-C 8 E_{t}-\Delta O C A_{t}+\Delta O C L_{t}-B E D_{t}-\Delta N F A_{t}-$

$$
\Delta D A_{t}-D \theta p_{t}+\Delta D_{s_{t}}+\Delta D_{L_{t}}+\Delta P S_{t}+\Delta E s_{t}-\Delta s_{t}
$$

The right-hand side of Equation 2-5 is a statement of the cash transactions of the firm for period t with their resultant impact on the cash balance. The rest of the ohapter will rely heavily on Equation $2-5$ as a convenient mechanism for determining and anslyzing the cash flows of the firm.

Cash Transactions of the Firm
The right-hand siae of Equation 2-5 can be divided into two parts, business transactions and money market transactions. The purpose of dividing transections into these two major areas is to point up the company's general need for funde from outside sources. Business trensactions, denoted
by BT_{t}, are receipts and payments for goods and services rendered to and by the firm during period t. Furthermore, $(2-6) \quad B T_{t}=N S O I_{t}-C \& E_{t}-\triangle O C A_{t}+\triangle O C L_{t}-\Delta V F A_{t}-\triangle O A_{t}-$ Dep_{t}.
Money market transactions are those in which money principal is received or returned. ${ }^{2}$ This can be written as $(2-7) \quad M M_{\mathrm{t}}=\Delta D_{s_{\mathrm{t}}}+\Delta D_{\mathrm{L}_{\mathrm{t}}}+\Delta I P S_{\mathrm{t}}-\Delta D_{\mathrm{t}}$ where:

$$
\begin{aligned}
& M M_{\mathrm{t}}=\text { money market transaotions, and } \\
& \Delta \mathrm{C}_{\mathrm{t}}=B \mathrm{~T}_{\mathrm{t}}+M \mathrm{H}_{\mathrm{t}}
\end{aligned}
$$

These two types of transactions eccount for all but two components of Equation $2-5$. The two components are $\Delta E S_{t}$ and - $\mathrm{BED}_{\mathrm{t}}$ which always sum to zero. $\triangle E S_{t}$ is the change in earned surplus during t and $\mathrm{BED}_{\mathrm{t}}$ is the earnings transferred into ES during t.

The business transactions can be further divided in two areas, the operating budget and the capital budget. The purpose of dividing business transactions into two areas is to point out more specifically the firm's needs for funds. Also, it can show the firm's abllity to return money to the

[^0]money market.
The operating budget permits us to show ash receipts from customers plus all cash transactions having to do with the acquisition of goods and services on current account---payments to factors of production for services rendered (i.e. rent, wages, interest, dividends) and payments to vendors for services or materials destined for deIIvery to customers. All these payments, excluding income taxes and dividends, can be called production payments.

The second type of business transaction is the capital budget. This includes expenditures for noncurrent assets; Investments and advances to subsidiaries or other companies; land, plant, and equipment; and other permanent or semipermanent assets.

Table 1 is designed to illustrate the above discussion for two years, 1952 and 1953. In 1952 business reoeipts were $\$ 7,692,832$ while business payments were $\$ 7,675,476$, making an excess of business receipte over payments of \$17,354. The firm could either have retumed this latter amount to the money market or added it to its cash balances. It chose to do the latter plus borrowing another $\$ 16,200$. This resulted in the cash balances increasing by $\$ 33,554$. In 1953 receipts from customers deciined. At the same time operating payments dropped, oausing an excess of receipts over payments in the operating budget. On the other

Table 1. Transactions affecting cash, 1952 and 1953

1952
Payments Receipts
Business transactions
Operating budget
Recelpts from customers
7688352
Production payments
7447153
Income tax payments Dividends
other current assets
Subtotal 7570905
7688352
$\begin{array}{ll}\text { Subtotal alfference } & 117446\end{array}$
Capital budget
Investments \& advances
Expenditures on fixed assets
Expenditures on other assets
104573
4313 116

Subtotals

1045732
4480
Subtotal difference 100093
Total business transactions $\quad 7675478$
Difference
17353

Money-market transactions

Qovernment securities
Notes payable-banks 45000
Notes payable-other
Long term liabilities
Issued and paid-in surplus
$\begin{array}{lll}\text { Total money-market transactions } & 45000 & 612000\end{array}$
Difference
16200

Total payments and recelpts	7720478	7754031
Effect on cash	33553	

```
Table 1 (Continued)
```

1953
Payments Recelpts

Business transactions

Operating budget

Recelpts from customers
7583943
Production payments
7241748
Income tax payments 102568
Dividends Other current assets

Subtotal
7524316
7583943
Subtotal aifference 59627

Capital budget
Investments \& advences 25257
Expenditures on fixed assets 95079
Expenditures on other assets
5
Subtotals
95084
25257
Subtotal difference
69827

Total business transactions	7619401	7609201
Difference	10200	

Money-market transactions
Government securities
Notes payable-banks 12640
Notes payable-other
Long term liabilities
Issued and paid-in surplus
Total money-market transactions $12640 \quad 28550$
Difference
15909

Total payments and rece1pts	7632041	7637751
Effect on cash	5710	

hand, payments exceeded recelpts in the capital budget. These two components of business transactions resuited in business payments exceeding business recelpts by $\$ 10,200$. This excess was offset by an increase in short-term borrowing from non-bank or other sources. This borrowing slightly increased the total amount of cash held at the end of 1953.

Summary

In this section the cash transactions were divided into three general areas. They were the operating budget, the capital budget, and the money market transactions. This can be written as
(2-8) $\quad C_{t}=O B_{t}+C B_{t}+M M_{t}$
where:

$$
\begin{aligned}
& O B_{t}=\text { the operating budget }=N S O I_{t}-C E_{t}- \\
& \triangle O C A_{t}+\triangle O C L_{t}, \\
& C B_{t}=\text { the eapital budget }=-\Delta V P A_{t}-\Delta O A_{t}-D P_{t}, \\
& M M_{t}=\text { the money market transactions }=\Delta D_{s_{t}}+ \\
& \Delta \mathrm{D}_{\mathrm{L}_{\mathrm{t}}}+\Delta I P S_{\mathrm{t}}-\Delta G_{\mathrm{t}} \text {, and } \\
& B T_{t}=O B_{t}+C B_{t} .
\end{aligned}
$$

Digression on Cash Balances

Cash balances of the firm are generally considered to be a transactions balance. A transactions balance is the cash held to bridge the interval between the time of the Incurrence of business costs and that of the receipts of sales' proceeds (11, p. 195).

It is quite difficult to say whether the cash balances of a firm will increase, decrease, or remain constant as transactions increase. At first glance it would appear that oash balances should increase. This is because a larger "interval" w111 have to be bridged as transactions increase. As the oash balance increases due to this interval, it should increase at a rate less than the rate of increase of transactions. This is due to economies of scale and spreading of risk (2).

However, other factors may enter whioh could reduce cash balances. As time goes by, the management of a firm may learn more about the operations of the firm, the nature of the demand for its product, and about newer and better techniques for determining the risk involved in the "Interval". There heve been significant developments in statistics and economics in recent years which deal with these problems---for example, statistical decision theory, Innear programming, and heuristic programming. It must be
assumed that these techniques would have had some impact on cash belances of a firm. An older firm living in todey's world would likely have gleaned some information over the years which would have an impact on its cash balance.

This accumulation of knowleage means that a firm can possibly change the framework within which $1 t$ must make a decision from a zero-sum game against nature, with no idea of the probabilities of the strategies of nature, into a game where it does know the probabilities of the states of nature. If this is the case, it could very well alter its choice of a strategy in a given situation. It might choose a strategy whioh minimizes the expected loss over all strategies rather than choosing one which minimizes the worst possible loss nature can bestow the firm.

Another factor altering cash balances is an actual reduction of risk. The firm holds cash balances because it believes the opportunity cost is Iess than the cost of having to liquidate other assets at short notice in order to pay bills. In liquidating assets to raise cash the firm may have to reduce the price of the goode to be sold. Banks today extend "IInes of credit" to flrms by setting up a certain amount of funds that the firm may borrow at any time.

This is quite important to the firm. If it can get the amount of cash it needs by simply lifting the phone and dialing the bank it is possible to lower the cash on hand

Figure 1. Cesh belances
absolutely. Moreover, it may lead to the firm actually trying to minimize the amount of cash on hand at a given moment. It may also free management from trying to calculate expected payments and recelpts, only becoming concermed if they approach too closely the maximum line of oredit. Thus, the aash balance may actually become a relatively unimportant decision except to keep it near sone very low level.

Figure 1 shows the end-of-the-year's cash balances for the years 1947 to 1964. Although there is no consistent trend upwards or downwards, there has been considerable variation in these balances. During the same period, sales have trebled, and consequently we cennot assert that cash balances have increased as sales, a measure of transactions, have increased. There is, however, some question about the valldity of Figure 1 because the oseh balance for each year has been taken from a population of 250 . There is also the question of whether or not there is "window dreseing" at the end of the year in order to make the annuel reports look better. In any event, it would be diffioult to prove that the cash balances have actually increased as trensactions have increased.

Cash Flows between the F1rm and the Money Market
Figure 2 shows the growth of oash payments and recelpts with respect to business transaction over time. Cash payments and recelpts have risen from slightly over four million dollars in 1946 to more than twelve million dollars in recent years. Payments and recelpts may differ from each other substantially. In 1959, e.g., payments exceeded business recelpts by $\$ 500,000$. Other large excesses of payments over recelpts can be noted.

According to Equation 2-8 a deflcit due to business transactions has to be made up by going to the money market or by a reduction in eash balances. In this firm most of the effect is in the money market. In Figure 1, the highest amount of cash balences was about $\$ 166,000$. This would not be large enough to cover an excess of business payments over business receipts of $\$ 500,000$.

Figure 3 displays the excess of business recelpts over business payments, and the excess of money market recelpts over money market payments. Both vary considerably. The interesting thing is the symmetry of the two lines. The years 1949 and 1952 are the only years in which the excess occurred on the same side of the 0 deficit merk. In 1949 the two combined to decrease the cash balence by $\$ 81,000$,
(000,000'S

Figure 2. Business transactions and sales
and in 1952 they combined to increase the oash balance by \$33,000.

Other than these two years money market transactions offset the excess of business paymente over business recelpts. The excess of money market receipts over money market payments is sometimes modified by decreases or increases in the cash balance, but then the changes in cash balances are not large. Flgure 1 shows the largest change in cash balances came in 1949 when money market and business transactions both ran a deficit.

In Equation 2-8 $B T_{t}=O B_{t}+C B_{t}$. We would expect the capital budget to show a falrly stable excess of payments over receipts, because of replacement of worn-out fixed assets. Those variations in the capital budget which do exist oan be traced by use of Equation 2-8.

Figure 4 shows the excess of capital budget expenditures over capital budget receipts. From 1947 to 1954 the excess is constant. After 1954 the excess gets larger and larger, reaching a maximum of $\$ 580,000$ in 1957. In 1953 the excess was only 370,000 . In order to explain this increase Equetion 2-8 will be used.

As it stands CB_{t} has three components; $\Delta \mathrm{VFA}_{\mathrm{t}}, \Delta \mathrm{AA}_{\mathrm{t}}$, and Dep_{t}. The change in other assets during $t, \Delta \mathrm{~A}_{t}$, contains a component called the change in investments and advances dur-

F1gure 3. Excesses of business receipts over business payments

ing $t, \Delta I \& A_{t}$, What is left of $\Delta D A_{t}$ w1ll be aenoted by $\Delta O A_{t}^{*}$. This gives us $(2-9) \quad C B_{t}=-D e p_{t}-\Delta N F A_{t}-\Delta I \& A_{t}-\Delta D A_{t}^{*}$. (- Dep ${ }_{t}-\triangle N F A_{t}$) is sometimes called gross investment or gross expenaitures on fixed assets. Cross expenditures on fixed assets and the change in investments and advances are the two main components of the capital budget. 3

In only two years has gross investment deviated markedly from its mean value---1956 and 1961, in which it was over $\$ 230,000$. For the wost part gross investment in year t falls within a range bounded by gross investment in year t-1 plus or minus 10\%. During the period 1954-1957 gross investment was quite stable.

The secret to the extreme increase in the capital budget deficit iles in $\Delta T \& A_{t}$. $\Delta \& A_{t}$ is composed of loans and advances to subsidiaries and of purchases of subsidiaries. In 1953 this account gave an excess of recelpts over expenditures of $\$ 25,000$. In 1954 and 1955 it changed to a small excess of payments over receipts. This excess of payments over recelpts carries over into 1957 where it reached a maximum of $\$ 476,000$. The gross expenditures on fixed assets of the firm were small relative to ΔA_{t}.

[^1]In a sense the expenditures in Δ Tid A_{t} are gross investment for the firm, though not as conoretely so as direct acquisition of fixed assets. The substantial excess of payments over recelpts in 1961 and 1962 are different from the usual excess. Again these are due to $\Delta T \& A_{t}$. In $1960 \Delta T \& A_{t}$ expenditures were $\beta_{15,000 ; ~ i n ~}^{1961}$ they inoreased to $\$ 176,000$ and. to $\$ 371,000$ in 1962.

This results in two periods of great expansion in the firu. The first period is from 1954 to 1957 , the second Irom 1961 to 1964. Both have called for large amounts of funds. The largest part of the funds was needed for expansion of subsidiaries while a smaller part was due to increasing fixed assets and replacement of worn-out fixed assets.

Figure 3 shows that in 1957 the largest net borrowing took place in the money market. In 1961 and 1962 the borrowing was also large. Evidently the need for funds for the expansion during these times was primarily financed by going to the money market, pather than internally.

The second half of business transactions is the operating budget. Iike the capital budget it also has many components. The Equation $2-8$ which contains the operating budget in mathematical notation is too general. It makes no allowance for individual current liabilities, current assets,
or costs and expenses. The operating budget in a more specific form is
$(2-10) \quad O B_{t}=\left(N S O I_{t}-\Delta \mathrm{Br}_{t}\right)-\left(\mathrm{CSO}_{t}-\Delta A P_{t}+\Delta \operatorname{Tnv_{t}}+\Delta O C A_{t}\right)$
$-\left(P I T_{t}-\Delta B I T\right)-D_{t}$
where:

$$
\begin{aligned}
& \Delta P R_{t}= \text { the change in trade receivables during } t, \\
& C S O_{t}= \text { costs, selling, and other expenses dur- } \\
& \text { ing } t, \\
& \Delta A P_{t}=\text { the changes in accounts payable during } t, \\
& \Delta I n v_{t}= \text { the change in inventories during } t, \\
& \Delta O C A_{t}= \text { the change in other current assets dur- } \\
& \text { ing } t, \\
& P I T_{t}= \text { provision for income taxes during } t, \\
& \Delta P I T_{t}= \text { the change in reserve for income taxes } \\
& \text { during } t, \\
& D I V_{t}=\text { aividends during } t, \text { and } \\
& N S O I_{t}= \text { net sales and other income during } t .
\end{aligned}
$$

 The firm has had an inorease in sales in 16 out of 18
 years. This would lead one to expect the operations pay- ments to exceed the operations recelpts due to increases in inventory, trade receivables, and other eaming assets. This is because of the firm's desire to achleve as large as profits possible when the probability of obtaining them is large. Figure 4, however, which showe the operations

budget as well as the oapital budget indicates that in fact operations payments have exceeded operations reeelpts in only four years. In 1962, one of the four years, sales actually declined. This leaves only three years when operations payments have exceeded operations receipts when sales have increased.

One reason for expecting payments to exceed recelpts When sales go up is the expension of trade receivables. This amounts to the firm financing its sales with a type of credit. If the firm expands trade receivables when inoreasing sales, it actually puts off the day when the money arrives at the firm. Figure 1 plots sales and business receipts. Recelpts lag behind sales by about one period, as Was expeoted. This lag of receipts means operations payments should exceed operations receipti.

The explanation of why operations recelpts exceed operations payments must $11 e$ in other oomponents of Equation 2-10. Since dividends are not usually paid until the following period as are income taxes, these two are eliminated as explanations.

The part of Equation 2-10 left, $-\left(\right.$ CSO $_{t}-\Delta A P_{t}+\Delta V V_{t}+$ $\Delta 0\left(A_{t}\right)$, must be the area where the answer lies. The most Iikely contenders are $\Delta I n v_{t}$ and $\Delta A P_{t}$. Figure 5 shows the magnitude of each of these elements. In $1956,1958,1963$,
and $1964 \Delta A P_{t}$ was larger then $\Delta I n v_{t}$ and in $1960 \Delta A P_{t}$ was not as negative as $\Delta I n v_{t}$. This means that as inventory increased accounts payable were increased more, or that the firm vas using accounts payable to innance itself, and explains to some degree why operations recelpts have been able to exceed operations payments. It need not be true that as sales increase the current expenditures w11l exceed current recelpts.

Debt Structure and Money Market Transactions Money market transactions were defined to be those in which money principal is received or returned. A more specific statement of this is

$$
(2-11) \quad M M_{t}=\Delta D_{s_{b_{t}}}+\Delta D_{s_{o_{t}}}+\Delta D_{L_{t}}+\Delta T S_{\mathrm{t}}-\Delta G_{t}
$$

Where:

$$
\begin{aligned}
& \Delta D_{s_{\mathrm{b}_{\mathrm{t}}}}=\text { the change in short-term bank debt, } \\
& \Delta D_{\mathrm{s}_{\mathrm{O}_{\mathrm{t}}}}=\text { the change in short-term other debt, and } \\
& \Delta D_{g_{t}}=\Delta D_{s_{\mathrm{b}_{\mathrm{t}}}}+\Delta D_{\mathrm{s}_{\mathrm{o}_{\mathrm{t}}}}
\end{aligned}
$$

Government securities transactions or Δ_{t} have been quite small in the firm. From 1947 to 1953 the amount held was about $\$ 1,000$. In 1954 it purchased $\$ 20,000$ worth and in 1955 it purchased $\$ 20,000$ more. The firiin has not held any since 1959. This indicates while it did hold government
securities, it was not partioipating very actively. 4
Another component which has not contributed much to money market transactions is $\triangle I P S_{t}$. Appendix A shows that the issuance of capital stock, or $\triangle T P S_{t}$, has been small. The reason for this is that the firm is primarily owned by one family. To issue more capital stock is either to dilute its control over the corporation or increase the family's investment in it. Both can be undesirable from the indiviaual's point of view. An increase in investment in the firm means that the owners are unable to diversify their personal portfolios as much as they may want. In this case the issuance of capital stock depends on many things outside of the firm as well as on the inside.

Since government securities and issued and pald-1n surplus play a rather insignificant role in the exchange of money principal, the bulk of the money market transactions Iles in the other three components, $\Delta \mathrm{D}_{\mathrm{s}_{\mathrm{b}_{t}}}, \Delta \mathrm{D}_{\mathrm{o}_{\mathrm{o}}}$, and $\Delta \mathrm{D}_{\mathrm{L}_{\mathrm{t}}}$. of these, $\Delta \mathrm{D}_{\mathrm{s}_{\mathrm{ot}}}$ needs olarification. This debt is made up of loans to the company by stockholders and company officers. There are two primary reasons for its existence.

The first is that if no oredit is avallable from other

[^2]sources and there 18 a need for funds, then the owners are going to have to finance the need by themselves or cut down on expenditures. If profits look good, they will be reluctant to do the latter. They could finance expansion of the firm by issuing capital stock to themselves but this amounts to a permanent type of loan and may interfere with their plans for thelr personal portfolios. Although they may not be willing to make changes in their personal portfolics for a long time they may be willing to do so for a short period of time. But in that case the best thing to do would be simply to lend to the firm on a short-term basis.

The second reason for stockholders and officer loans is that the loans pay interest at a rate which is less than the rate paid on bank loans. At the same time the rate is above rates paid on savings deposits at savings-and-2oan associations. The result is to encourage omers and officers to alter the structure of their personal portfolios. The first reason or the desire to expand the firm seems to be the most important during the first years of the study because the firm could not get a long-term loan until 1954. Adaltions to long-term funds then had to come from profitable operetions and short-term loans from owners and offlcers. In this aase, the title "short-term" loan 18 probably an 2na1oation of optimism rather then the actual length of time the debt existed.

Figure 6 shows the magnitudes of the three types of debt for the years 1946 to 1964. An interesting thing happens here. The long-term debt increasea in 1954 and then tapers off for two years. In 1957 it increases again, and drops down in 1958. It is as though the fira first borrowed and then returned money in order to convince the sources of the funas that it coula pay off the debt. This is not too unlikely with any firm in its first dealings with an outside source of funds. From 1959 on long-term debt increases substantially until finally decreasing in 1964.

Short-term benk loans appear always to have been a primary source of funds. They vary quite a lot and have in general increased. The particular information in Figure 6 about short-term bank debt, however, has some of the unreliable aspects of the cash balances discussed earlier. That is, each year's magnitude is only one out of a population of 250 possible values for a year. Although it probably is not quite so bad as cash, since the short-term loans are for 30-90 days, it does miss entirely seasonal variations.

The last type of debt on P1gure 6 is short-term other debt. It played a more prominent role before long-term debt came into existence. Since that time it has decreased to a negligible amount. It would appear that up to 1958 the first faotor, or the expansion of the f1rm, was the most im-

portant for its existence. Since that time the higher interest rate than that paid on savinge deposits at finencial institutions appears to be the most important reason for officers and stockholders maintaining loans to the firm.

In order to show the relations among the various types of debt, Figure 7 has been drawn to show the excess of recespts over payments for the various types of debt. The excess is actually the net borrowing for each type of debt over the period.

The short-term debts tend to vary inversely with each other. This is especially true in the periods, 1947-1954, and 1957-1964. However, the excess in the short-term other debt $1 s$ rarely of the same magnitude as for short-tera bank debt. This inaicates that they may be only partial aubstitutes for one another.

After 1957, the excess in long-term debt tends to vary In the same direction as the excess in short-term bank aebt. This means that they do not appear to be substitutes for one another. Short-tern debt should grow as ourrent assets expand. At the same time, fixed assets could be expanding and long-terin debt could be used for that purpose. It onsequently is not possible to apecify an exact relationship between these two typea of aebt.

Summary

In studying receipts and payments of the firm, certain things have come to light. First, much of the variation in the oapital budget is due to variations in investments and advances. Only a smaller part of the variation is due to increases in expenditures on fixed assets. post of the expenditures on fixed assets are replacement of worn-out fixed assets.

Operations recelpts heve been able to exceed operations payments in many years aven though sales have increased in most of these years. This has been due to reductions in inventories and increases in accounts payable.

Long-term debt and short-term bank debt have both inoreased over the years, while at the same time short-term other debt has decreased to a very small amount. There appears to be 11ttle use of the aifferent types of debt as substitutes for one another. However, short-term bank debt has gone up when short-term other debt has gone down. Also it has been since the introduction of long-term debt that short-term other debt has become small, although there does not appear to be any other direot relation between the two.

Non-Financial Flows

It is possible to substitute the more specific Equations $2-9,2-10$, and $2-11$ into $2-8$ to obtain

$$
\begin{aligned}
& \text { (2-12) } \quad \Delta E_{t}=\left(N S O I_{t}-\Delta B_{t}\right)-\left(\text { CSO }_{t}-\Delta A P_{t}+\Delta I n v_{t}+\Delta C A_{t}^{*}\right) \\
& -\left(\text { PIT }_{t}-\Delta \text { PIT }_{t}\right)-D 1 v_{t}-\left(\operatorname{Dep}_{t}+\Delta E A_{t}\right)-\Delta E A_{t}- \\
& \Delta A_{t}^{\prime \prime}+\Delta D_{s_{b_{t}}}+\Delta D_{s_{o_{t}}}+\Delta D_{I_{t}}+\Delta P S_{t}-\Delta P_{t} .
\end{aligned}
$$

It was mentioned above that $\left(\Delta E S_{t}-\operatorname{BED}_{t}\right)$ could be left out of Equation 2-8 depending on one's preferences because it is slways equal to zero. It must be in Equation 2-12 if it is desirable to subtract out the income statement. The income statement is
$(2-2)^{\prime} \mathrm{NSOI}_{t}-\operatorname{CSO}_{t}-\operatorname{PIT}_{t}-\operatorname{Dep}_{t}-\operatorname{DIv}_{t}-\operatorname{RED}_{t}=0$ Subtracting Equation 2-2' from Equation 2-12 plus $\left(\Delta E s_{t}\right.$ BED_{t}) leaves

$$
\begin{aligned}
& \text { (2-12) } \quad \Delta C_{t}=-\Delta I n v_{t}-\Delta P P_{t}-\Delta D C A_{t}^{*}+\Delta V P_{t}+\Delta P I T_{t}+\Delta E S_{t}- \\
& \Delta V P A_{t}-\Delta I E A_{t}-\Delta A_{t}^{*}+\Delta D_{s_{\mathrm{b}_{\mathrm{t}}}}+\Delta D_{\mathrm{s}_{\mathrm{o}_{\mathrm{t}}}}+\Delta D_{\mathrm{I}_{\mathrm{t}}}+\Delta T S_{t} \\
& -\Delta_{t} \text {. }
\end{aligned}
$$

As it appears to people on the outside loaning money to the firm the left- and right-hand sides of Equation 2-12 have been negative much of the time. The view from the inside is different: management would look at it as an expansion of the firm. To portray the role of the firm, Equation 2-12 is multiplied by (-1) and the money market transactions are shifted to the left-hand side to obtain (2-13) $\Delta \mathrm{D}_{\mathrm{s}_{\mathrm{b}}}+\Delta \mathrm{s}_{\mathrm{o}_{\mathrm{t}}}+\Delta \mathrm{D}_{\mathrm{L}_{\mathrm{t}}}+\Delta \operatorname{TPS}_{\mathrm{t}}-\Delta \mathrm{c}_{\mathrm{t}}-\Delta_{\mathrm{t}}=\Delta \operatorname{In} \mathrm{v}_{\mathrm{t}}+$
$\Delta P R_{t}+\Delta O C A_{t}^{*}-\Delta A P_{t}-\Delta B I T_{t}-\Delta E S_{t}+\Delta N P A_{t}+\Delta I E A_{t}+$ $\triangle O A_{t}{ }^{*}$
The assets and liabilities on the left-hand side are called financial in this case because they are ones that are eash, close to cash, or obtained cash for the firm. Those on the right-hand side will be called non-financial assets and liabilities.

For the most part the left-hand side of Equation 2-13 has been positive. It represents a flow of funds into the firm with a resultant burgeoning of non-financial assets. The components on the right-hand side are net ohanges in the respective accounts for the period. The sum of these components will be called a net non-financial flow or B_{t}. It comes about by the firm either increasing debt or lowering cash or both. It was shown above that the firm has preferred most often to increase debt.

The net non-finaneial flow can be broken or simplified into three main components. The first part, to be denoted $\Delta A_{C_{t}}$, is the change in current non-financial assets minus the change in current non-financial liabilities. It is the net change on non-financial current accounts. The second part $1 s$ the net expenditures on fixed assets and other noncurrent assets. This includes $\triangle N P A_{t}, \triangle I \& A_{t}$, and $\triangle 0 A_{t}^{*}$. For simplio1ty's sake $1 t$ w1ll be called net investment, denoted

by I_{t}. The third part is $\Delta E S_{t}=R E D_{t}$.
Δo_{t} should vary quite a bit sinoe as anticipations of sales go up, the fim w111 increase inventories to be ready for the increase $1 n$ sales. Also, as sales go up trade receivables will go up. This increase in ourrent nonfinancial assets will be dampened to some extent by increases In accounts payable. Nost of the variation should be aue to seasonal factore---for example, in the early apring the firm adds inventory to get ready for the big sales which take place in the spring, summer, and fall.

If accounts payable do not increase as much as ourrent non-financial assets, then the firm must increase debt or Iower its cash or government securities position to pay the difference. Most of this effeot should go to short-term debt.

Figure 8 shows $\Delta \mathrm{A}_{\mathrm{c}_{\mathrm{t}}}$ on an annual basis. This $1 s$ shown for historical and not for analytical purposes because it misses seasonal variation.

Summary
Over the years the firm has increased its debt while expanding its non-financial assets. This means that the net non-finanoial flow has been positive and has been primarily financed by debt. Changes in debt can be modified to some extent by lowering cash and government securities. Cash,
however, hes remained constant over time and government security transactions have been largely insignificant. The firm has chosen, so to speak, a combination of debt and ilquidity to meet the net non-financial flow. In the next ohapter a theory about this oholoe of debt and liquialty will be presented. In the following chapters a statistical model will be used to test this theory using monthly information rather then the annual data which has been presented in this chapter.

A THEORY OF FINANCIAL DECISIONS

This ohapter is essentially a reatatement of a theory of W. H. L. Anderson in h1s book, Corporate Debt and Fixed Investment (1). His theory will be presented in the first part of this chapter. One change in his model made in the latter part of this chapter is the inclusion of short-term other debt. This is due to the particular characteristios of the firm and not to theoretical concepts.

The Theory

The right-hand side of Equation $2-13$ was called a net non-financial flow. For the time being it will be denoted by B_{t} to simplify the discussion. Changes in the various types of debt plus the change in issued and paid-in surpius W111 be denoted by ΔD_{t}. Changes in cash and in government securities will be denoted by Δ_{t}, the change in iiquidity during period t. This gives
(3-1) $\quad B_{t}=\Delta D_{t}-\Delta_{t}$.
In order to develop the theory it is assumed that t is a short period of time (1, p. 30). The period of time is short enough so that the firm has decided what its production will be, the terms of credit it will give and take, and the prices at which it will sell goods and services.

According to the 1dentity Equation $3-1$ the firm must
choose a combination of debt and liquidity equal to B_{t}. The set of possible solutions is infinite. But since the firm does not want to add debt and liquidity in equal amounts forever, there must be a solution to Equation 3-1 which is an optimum combination of Δv_{t} and Δt_{t}. This is called an optimum solution.

It is also assumed that for the firm there is some safe level of debt denoted by D_{t}^{*} and some necessary level of liquidity by $L_{t}^{*}(1, p .32)$. Since in making a decision the firm knows the level of each, it can compare its actual debt with its safe level of debt and its actual level of liquidity with its necessary level of iquidity.

The smaller is ($L_{t}-L_{t}^{\prime \prime}$) in the system of real numbers the greater is the probability of belng caught short of liquidity and being forced to dispose of other assets to raise cash. The smaller is ($D_{t}^{*}-D_{t}$) the larger is the probability of not being able to pay off debts and, also, of being considered a poor risk by one's oreditors (1, p. 32).

These risks or dangers should result in certain behavioral patterns in a firm. For example, the smaller is ($\left.L_{t-1}-I_{t}^{*}\right)$, the greater borrowing or debt accumulation should be, because the firm dare not lower liquidity any further and must borrow additional funds to meet the requirements of B_{t}. Similarly, the smaller is ($D_{t}^{*}-D_{t-1}$) the more
hesitant the firm should be to borrow any larger amounts. The risks or dangers should also affeot ilquidity accumulation. In this case the smaller is ($\left.L_{t}^{*}-L_{t-1}\right)$ the less 11quillty the firm would ilke to accumulate. Finally, the smaller is $\left(D_{t}^{*}-D_{t-1}\right)$ the less liquidity the firm will aocumulate, because it will be hesitant to accumulate any further debt and will try to satisfy Equation $3-1$ by lowering ilquidity or at least not accumulating it as quickly.

It should be true that interest rates have an effect on safe aebt and neoesaary ilquidity. As the interest rate goes up, it makes debt more costly and requires a larger payment to the iender. This means that as the interest rate on borrowing increases, the amount of safe debt should decrease.

The treasury bill rate should affect safe debt and necessary liquidity too. As the treasury blil rate goes up, 11quidity is more desirable to hold then previously and necessary liquidity is therefore higher.

The above discussion indicates thet there are two components of the marginal cost of outside funds. The first is increasing risk as D_{t-1} gets larger. The second is the cost of the interest rate. Similariy, there is a marginal benefit of ilquidity. The first component of it is the deoreasing risk as ilquidity accumulates, and the second com-
ponent is the treasury bill rate or lending rate. An optimal solution of Δ_{t} and Δ_{t} would be one that equates the marginal cost of debt with the marginal benefit of liquidity subject to Equation 3-1.

The above discussion can be written as
(3-2) $\quad \Delta D_{t}=f\left(B_{t}, D_{t-1}, D_{t}^{*}, L_{t-1}, L_{t}^{*}, i_{t}, i_{t}^{1}\right)$, and (3-3) $\Delta_{t}=g\left(B_{t}, D_{t-1}, D_{t}^{*}, L_{t-1}, L_{t}^{*}, i_{t}, i_{t}^{1}\right)$, where:

$$
{ }^{I_{t}}=\text { the borrowing rate during } t \text {, and }
$$

$i_{t}^{\prime}=$ the lending or treasury bill rete during t. According to Anderson the following should be true of the partial derivatives of f and g
(3-4) $0<\frac{\partial f}{\partial B_{t}}=1+\frac{\partial g}{\partial B_{t}}<1$,
(3-5) $\quad \frac{\partial f}{\partial D_{t-1}}=\frac{\partial g}{\partial D_{t-1}}<0$,
(3-6) $\quad 0<\frac{\partial f}{\partial D_{t}^{*}}=\frac{\partial g}{\partial D_{t}^{*}}$,
(3-7) $\frac{\partial f}{\partial I_{t-1}}=\frac{\partial g}{\partial L_{t-1}}<0$,
(3-8) $0<\frac{\partial f^{*}}{\partial L_{t}^{*}}=\frac{\partial g}{\partial L_{t}^{*}}$,
(3-9) $\frac{\partial f}{\partial 1_{t}}=\frac{\partial g}{\partial 1_{t}}<0$, and
(3-10) $0<\frac{\partial f}{\partial 1_{t}^{\prime}}=\frac{\partial g}{\partial 1_{t}^{\prime}}(1$, p. 33).
The partials in Equation 3-4 take the values they do beaause the larger B_{t} is the larger the right-hand side of Equation 3-1 has to be. Part of an increase in B_{t} will probably be taken care of by an increase in ΔD_{t}. The rest of B_{t} must be made up by a decrease in $\Delta \mathrm{t}_{\mathrm{t}}$ because
(3-11) $\frac{\partial f}{\partial B_{t}}=\frac{\partial\left(\Delta D_{t}\right)}{\partial B_{t}}=\frac{\partial\left(B_{t}+\Delta I_{t}\right)}{\partial B_{t}}=1+\frac{\partial\left(\Delta t_{t}\right)}{\partial B_{t}}=1+\frac{\partial g}{\partial B_{t}}$.
In Equation 3-5 if D_{t-1} increases that means that ($D_{t}^{*}-D_{t-1}$) will be less. Then ΔD_{t} should decrease or be less then it would have had there been a smaller D_{t-1}. Because of constraint, Equation 3-1, 1iquidity must decrease in order to satisfy Equation 3-1 because
(3-12) $\frac{\partial f}{\partial D_{t-1}}=\frac{\partial\left(\Delta D_{t}\right)}{\partial D_{t-1}}=\frac{\partial\left(B_{t}+\Delta L_{t}\right)}{\partial D_{t-1}}=0+\frac{\partial\left(\Delta_{t}\right)}{\partial D_{t-1}}=\frac{\partial g}{\partial D_{t-1}}$.
The formulation of Equation $2-6$ is very olose to Equetion 2-5. As the amount of safe debt inoreases this means that D_{t} can be larger or that ΔD_{t} can be larger than before D_{t}^{*} increased. According to Equation 3-1 $\Delta \mathrm{t}_{\mathrm{t}}$ has to be larger and by the same amount as ΔD_{t} increased.

It should be clear because of the constraint, Equation

3-1, that the partials of $\Delta \mathrm{D}_{\mathrm{t}}$ and $\Delta \mathrm{L}_{\mathrm{t}}$ in Equation 3-3 through Equation 3-10 must be equal. In the following explanations of the various partials the discussion of equality will be omitted.

In Equation 3-7, the $\frac{\partial f}{\partial L_{t-1}}$ is less then zero because as L_{t-1} geta larger this means that ($L_{t}^{*}-L_{t-1}$) is smaller and less need exists for more I_{t}. In Equation 3-8 as $L_{t}^{\prime \prime}$ gets larger it means that ($L_{t}^{*}-L_{t-1}$) is larger and the risk associated with it is larger. Therefore, the firm should prefer a larger amount of L during t and thus, $\Delta \mathrm{t}_{\mathrm{t}}$ should be larger.

In the discussion previous to Equation 3-2 1t was stated that as 1 increased, debt would be more costly to acoumulate. This is why its partial is less than zero in Equation 3-9. In Equation 3-10 the partials follow what was mentioned previous to Equation 3-2 about ilquidity accumulating faster as the treasury bill rate goss up.

Anderson expresses Equation 3-2 and Equation 3-3 as the following linear approximations:
(3-13) $\Delta D_{t}=a+b\left(D_{t-1}-D_{t}^{*}\right)+o\left(L_{t-1}-L_{t}^{*}\right)+e B_{t}+h 1+$ 11', and
(3-14) $\Delta L_{t}=a+b\left(D_{t-1}-D_{t}^{*}\right)+o\left(L_{t-1}-L_{t}^{*}\right)+(e-1) B_{t}+$ $h_{1}+31^{\prime}$,
where:

$$
\begin{aligned}
& b, c \text {, and } h \text { are }<0 \text {, and } \\
& e \text { and } j \text { are }>0(1, p .33) .
\end{aligned}
$$

Letting F be equal to $a-b D_{t}^{1}-o L_{t}^{*}+n 1+j 1^{\prime}$, and substituting, the results are:
(3-15) $\Delta D_{t}=b D_{t-1}+0 L_{t-1}+e B_{t}+P$, and
(3-16) $\Delta L_{t}=b D_{t-1}+o L_{t-1}+(e-1) B_{t}+F$.
The insst difference of Equation 3-15 is (3-17) $\Delta^{2} D_{t}=\Delta \Delta D_{t-1}+c \Delta t_{t-1}+e\left(\Delta B_{t}\right)+\Delta F_{*}$

Hence,

$$
\begin{aligned}
& \left.\Delta D_{t}-\Delta D_{t-1}\right)=b \Delta D_{t-1}+\Delta \Delta t_{t-1}+e\left(\Delta B_{t}\right)+\Delta v_{t} \text { or } \\
& \Delta D_{t}=\Delta D_{t-1}+b \Delta D_{t-1}+c \Delta t_{t-1}+e\left(\Delta B_{t}\right)+\Delta r
\end{aligned}
$$

Adaing $\left(\Delta D_{t-1}-c D_{t-1}\right)$ to the right-hand side the following is obtained:
(3-18) $\quad \Delta D_{t}=\Delta D_{t-1}+\Delta_{t-1}+d D_{t-1}+d \Delta_{t-1}-d D_{t-1}+$

$$
\begin{aligned}
& e\left(\Delta B_{t}\right)+\Delta v, \text { or } \Delta D_{t}=\Delta D_{t-1}(1+b+c)-c\left(B_{t-1}\right)+ \\
& e\left(\Delta B_{t}\right)+\Delta F
\end{aligned}
$$

Por constant $B_{t}=\bar{B}$ and $\Delta \bar{F}=\overline{\Delta F}, \Delta \bar{B}=0$ and
$(3-19) \quad \Delta D_{t}=\Delta D_{t-1}(1+b+c)+\overline{\Delta F}-c \bar{B}$.
For $t=1$,

$$
\Delta_{1}=\Delta \nu_{0}(1+b+c)+\overline{\Delta F}-c \bar{B} .
$$

For $t=2$,

$$
\begin{aligned}
\Delta D_{2}= & \Delta D_{1}(1+b+c)+\overline{\triangle F}-c \bar{B}, \text { or } \\
= & \Delta D_{0}(1+b+c)^{2}+(\overline{\Delta F}-c \bar{B})(1+b+c)+ \\
& (\overline{\Delta F}-c \bar{B}), \\
= & \Delta D_{0}(1+b+c)^{2}+(\overline{\Delta \bar{P}}-c \bar{B})(1+b+c)+ \\
& \overline{\Delta F}-c \bar{B} .
\end{aligned}
$$

In general, the solution for period t is:
$(3-20) \quad \Delta D_{t}=\Delta D_{0}(1+b+c)^{t}+(\overline{\mathrm{F}}-\mathrm{c} \overline{\mathrm{B}})(1+b+c)^{\mathrm{t}-1}+\ldots$

$$
+(\bar{\Delta}-c \bar{B})(1+b+c)^{t-t} .
$$

In equilibrium $\Delta \mathrm{D}_{\mathrm{t}}=\Delta \mathrm{D}_{\mathrm{t}-1}$ which implies

$$
\Delta D_{t}=\Delta D_{t}(1+b+c)+\overline{\Delta F}-c \bar{B} .
$$

Hence,

$$
\begin{aligned}
& \Delta D_{t}-\Delta D_{t}(1+b+c)=\overline{\Delta p}-o \bar{B}, \text { or } \\
& \Delta D_{t}(-b-c)=\bar{\Delta}-c \bar{B}, \text { so }
\end{aligned}
$$

(3-21) ${\overline{\Delta D_{t}}}_{t}=\frac{(\bar{\Delta}-c \bar{B})}{-(b+c)}$ which is the equilibrium solution for Δ_{t}.

A similar procedure can be applied to Equation 3-14 to obtain

$$
\text { (3-22) } \begin{aligned}
& \Delta \mathrm{L}_{\mathrm{t}}=\Delta \mathrm{t}_{0}(1+b+c)^{t}+(b \bar{B}+\overline{\Delta v})(1+b+c)^{t-1}+\cdots \\
& +(b \bar{B}+\overline{\Delta F})(1+b+c)^{t-t}, \text { and the equilibrium solu- }
\end{aligned}
$$

tron is

$$
\text { (3-23) }{\overline{\Delta_{t}}}_{t}=\frac{\left(\mathrm{bS}+\overline{\mathrm{D}^{\prime}}\right)}{-(\mathrm{b}+\mathrm{c})} .
$$

$$
\text { If } 2+b+c>0 \text { or if } b+c>-2 \text { then for any devia- }
$$

tion of D_{t-1} from D_{t}^{*} an adjustment will be made according to Equation $3-20$. For example, if ($\left.D_{t-1}-D_{t}^{*}\right)$ is greater than zero, the firm would lower ΔD_{t} but too far. The next period It would inorease $\Delta \nu_{t+1}$ but again too far. However the distance in $t+1$ would not be as far from $\overline{\Delta D}$ as it was in t and ΔD eventually will converge to the equilibrium value of $\overline{\mathbb{D}}$. This case is shown in pigure 9. The case of $2+b+c<0$ is shown in Figure 10.

If $1+b+c>0$ or $\mathrm{b}+\mathrm{c}>-1$, then ΔD_{t} would. come closer to the equilibrium value without going past it. This case is showm in Figure 11.

Assume that there is no secular trend upwards or downwards in $B_{t}(1, \mathrm{p} .34)$. If this is the oase, B_{t} can be represented by its oyolical average even if it does vary over the course of a business cycle.

Let the secular change in F be $\Delta F=-\Delta \Delta D^{*}-c \Delta L^{*}$. Substituting this into Equation $3-21$ results in

$$
\begin{aligned}
& \Delta D=\frac{-D \Delta D^{*}-a \Delta t^{*}-O B}{-(b+c)} \text { so, } \\
& -(\Delta D)(b+c)=-D \Delta D^{*}-c \Delta t^{*}-c B, \text { or } \\
& \Delta D+C \Delta D=D D^{*}+C \Delta t^{*}+C B \text {. This can be changed }
\end{aligned}
$$

into:

$$
\begin{aligned}
& \Delta D-\Delta D^{*}=c \Delta D^{*}-\Delta \Delta D+c B . \text { Thus, } \\
& \Delta D-\Delta D^{*}=\frac{c}{b}\left(\Delta \Delta^{*}-\Delta D+B\right), \text { or }
\end{aligned}
$$

(3-24) $\quad \Delta\left(D-D^{*}\right)=\frac{c}{b}\left(\Delta t^{*}-\Delta D+B\right)$
If ΔD^{*} is substituted for ΔD, then $\Delta\left(D-D^{*}\right)=\left(\frac{c}{b}\right)$ $\left(\Delta L^{*}-\Delta D^{\prime \prime}+B\right)$. If $\left(\Delta L^{\prime \prime}-\Delta D^{\prime \prime}+B\right)>0$ or $B>\left(\Delta D^{*}-\Delta t^{*}\right)$ then $\Delta\left(D-D^{*}\right)>0$. This results in the firm moving into a more and more risky situation because the average net nonfinancial flow exceeds the difference in the growth of safe debt and necessary liquidity. Since the firim is sensitive to this risk it should try to alter B if it cen such that the average net non-financial flow is equal to $\left(\Delta D^{*}-\Delta t^{*}\right)$. It was assumed on page 38 that the firm had made its decisions about production, the prices of goods and services, and the terms it would issue and receive credit. In the long run this assumption does not have to hold. It cen alter at least a part of B which will be denoted by Bcon. The part Which is uncontrollable will be denoted by $B_{\text {ucon }}$ such that $B_{\text {oon }}+B_{\text {ucon }}=B_{t}$.

The firm will try to alter $B_{\text {con }}$ such that it is maximizing profits while $B_{t}=\left(\Delta D^{*}-\Delta t^{*}\right)$. If it neglects profits and raises prices and outs back its expenditures, it oan lower B_{t} but only to some minimum. It then crosses a point where the flow of recelpts into the firm is stemmed or else retained earnings are lowered to the point where again B_{t} increases to equality with $\left(\Delta D^{*}-\Delta \mathrm{L}^{*}\right)$. In this latter

Figure 9. Converging situation

Figure 20. Diverging situation

Figure 11. Monotonioally converging situation

Figure 12. Possible relationsh1ps between B and $B_{c o n}{ }^{a}$
asource: (1, p. 36)
case, however, the firm is not maximizing profits. This is showm in Figure 12, where X_{1} and X_{2} represent points of $B_{c o n}$ where $B_{\text {con }}+B_{\text {ucon }}=\left(\Delta D^{*}-\Delta t^{*}\right)$. What it amounts to is that as the firm tries to lower $B_{c o n}$ the uncontrollable part of B increases more then $B_{c o n}$ lowers. This is because as the firm raises prices on the goods it sells, the firm decreases total revenue because the demand ourve has an elastio portion in 1t. Also, the firm may out out some services which shift the demand curve back and, consequently decrease total revenue more than the decrease in expenditures.

Though Anderson doesn't mention it, there may be an exception to the above rule. That is, a firm may lower prices to the point where B_{t} becomes greater than ΔD^{*} $\Delta *^{*}$), but have larger profits in the long run so that the average net non-financial flow $=\left(\Delta \nu^{*}-\Delta^{*} .^{\prime \prime}\right)$. This might happen in a case where the lower prices enable a firm to acquire a monopoly and consequently reap larger profits and, therefore, larger retained eamings in the future.

Safe Debt and Necessary Liquidity
This section will spell out more clearly just what safe debt depends on. In the previous section the determination of D^{*} was mentioned in a naive manner by using the interest rate and the treasury bill rate. Other factors than these affect it.

In addition, the various types of debt will be listed. in this section. It should be pointed out that the only addition to Anderson's theory here is to split short-term debt into two types---short-term bank debt and short-term other debt.

The term "liquidity" implies that an asset can either be used as a medium of exchange or be converted into a medium of exchange at short notice with only a small sacrifice in the price of the asset. Cash is obviousiy iiquid, since it is a medium of exchange. Government securities are also 11quid because they can be readily converted into cash due to the organized market for them. Other assets are not so Iiquid because of the time involved in diaposing of them or because of the reduction in the price of the goods which may have to take place in order to dispose of them quickly. Examples of less ilquid assets are inventories, flxed assets, and trade recelvables. In this paper the set of ilquid assets consists only of cash and government securities.

It was hypothesized by Keynes that as transactions go up, so shoula the demand for money (11). This is the same thing as aaying that necessary cash should go up as transactions go up. Using sales as a measure of transactions, necessery oaah should rise as seles rise.

A second factor entering into the demand for cash is the amount of current liablilties. Liabilities are alled
"current" if there is some expectation of having to pay them in the near future. If there are expectations of having to pay larger current liablities, the amount of necessary cash should increase.

The current liabllities are short-term bank debt, shortterm other debt, accounts paysble, accrued tax liabilit1es, and dividends payable. Short-term bank debt and short-term other debt will be measured by their balance at the end of the previous period. Tax liability will be measured as of the current period. Dividends payable will be measured by those payable in the next period. Accounts payable will not be included because it is generally collinear with sales (1, p. 40).

The factors that necessary cash depend on can be summarized as

$$
\text { (3-25) } C_{t}^{*}=f_{\mathrm{c}} *\left(S_{\mathrm{t}}, D_{s_{\mathrm{b}_{\mathrm{t}-1}}}, T_{\mathrm{a}_{\mathrm{t}}}, D_{\mathrm{s}_{\mathrm{o}_{\mathrm{t}}}}, D_{2}{v_{\mathrm{t}+1}}\right) \text {, }
$$

where:

$$
\begin{aligned}
\mathrm{C}_{\mathrm{t}}^{*}= & \text { necessary eash, } \\
\mathrm{S}_{\mathrm{t}}= & \text { sales during } t, \\
\mathrm{D}_{\mathrm{s}_{\mathrm{b}_{\mathrm{t}-1}}}= & \text { debt outstanding to banks at the end of } \\
& \text { the previous period, } \\
\mathrm{D}_{\mathrm{s}_{o_{t-1}}}= & \text { debt owed to others at the end of the } \\
& \text { previous period, }
\end{aligned}
$$

$T_{a_{t}}=$ accrued tax inability at the end of t, and D1v $\mathrm{t}_{\mathrm{t}+1}=$ dividends payable in the next period. The other type of ilquidity is govemment securities. Government securities can not usually be used as a medium of exchange but, as was pointed out above, they can be converted into cash rather quickly. Their greatest attribute relative to cash is that they earn interest. Since they are essentially a buffer stock against expected and unexpected needs for cash, they ahould depend on the things that necessary ash depends on. Govermment securities should especialIy depend on current liabilities that have a known payment date---for example taxes, $11 v i d e n d s$, etc. Government seourities should also depend on the lending or treasury bill rate. As the treasury bill rate increases, it $1 s$ more profitable to hold them, so the holdings of government securities should inorease.

The necessary amount of government securities can be written as
(3-26) $a_{t}^{\prime \prime}=f_{g^{*}}\left(s_{t}, T_{a_{t}}, D_{s_{b_{t-1}}}, D_{s_{o_{t-1}}}, D i v_{t+1}, 1_{t}^{1}\right)$
where:

$$
\begin{aligned}
G_{t}^{*}= & \text { necessary amount of government securities, } \\
& \text { and } \\
1_{t}^{\prime}= & \text { the treasury bill rate during } t \text {, and the } \\
& \text { other terms are as previously defined. }
\end{aligned}
$$

The firm has four tools which it can combine to determine 1 ts debt structure. These are short-term bank debt, short-term other debt, long-term debt, and 1 ssued and paidin surplus.

P1rms with short-term debt must be concerned with their ablilty to repay them since the notes usually heve a date on which repayment must be made. Abllity to repay at a specific time will depend on the stook of ilquid assets and expected cash flows. The more liquid essets the firm has and the larger 1 ts profits, the greater will be the firms ability to repay. Additionally, the larger the tax 11ability, the smaller the amount of liquiaity that the fira may use for debt repayment. These relationships oan be written in mathematical notation as

$$
\text { (3-27) } D_{\mathrm{s}_{\mathrm{b}_{t}}}=\mathrm{f}_{\mathrm{a}_{\mathrm{s}_{\mathrm{b}}}}\left(E \mathrm{ED}_{\mathrm{t}}, C_{\mathrm{t}-1}, \mathrm{c}_{\mathrm{t}-1}, \mathrm{~T}_{\mathrm{a}_{\mathrm{t}}}\right)
$$

where:

$$
\begin{aligned}
& D_{s_{b_{t}}}=\text { safe short-term bank debt during } t \text {, and } \\
& \operatorname{BED}_{t}=\text { retained earnings during } t .
\end{aligned}
$$

The other type of short-term debt is that which is loaned to the company by stookholiers and officers. This debt should be dependent on other factors than short-term bank debt is because of the stockholders' and officers' desire to diversify their investment portfolios, and of possible greater returns on other investments than the company.

It can be hypothesized that such loans are dependent on the same factors as short-term bank debt and test the hypothesis to see if it should be refected. This will be written as, (3-28) $D_{B_{O_{t}}}^{*}=f_{d_{S_{0}}}\left(\right.$ RED $\left._{t}, C_{t-1}, G_{t-1}, T_{a_{t}}\right)$
where:

$$
\mathrm{D}_{\mathrm{s}_{\mathrm{O}_{t}}}^{*}=\text { safe level of short-term other debt. }
$$

In an interview study of a group of large manufacturing firms it was found that there was a widespread use of a longterm debt limit based on total assets (4). Most firms seemed to have some 1dea as to the amount of safe long-term debt. The amount was formulated in the polley of the flrms and was considered a routine matter. The firms interviewed seemed to adhere olosely to the policy and to avold actions Which might push them over the ilmit. Accepting this as general behavior, we write $(3-29) D_{L_{t}}^{*}=f_{d_{L}^{*}}\left(\right.$ TAS $\left._{t-1}\right)$
where:

$$
\begin{aligned}
D_{L_{t}}^{*}= & \text { safe long-term debt đuring } t \text {, and } \\
\text { TAS }_{t-1}= & \text { total assets at the end of the previous } \\
& \text { period. }
\end{aligned}
$$

The last type of debt to be considered is equity financing. This is quite different from the other types of debt. In this case there is no obligation to repay the principal,
although there is usually an obligation to pay dividends. Apparentiy the worst disadvantage to equity financing is that the number of shares has to be added to the denominator in oalculating the earnings per share. Donaldson found that manufacturers felt their primary obligation to the stockholders was to maintain or improve earnings per share (4). Consequently, they were reluctant to issue shares unless the possibility of lowering earnings per share was considered quite remote. As a result, established firas rarely use equity finanoing to raise funds. Anderson points out that efforts to explain the variations in equity finencing have, more or leas, been fruitless (1). Anderson, therefore, leaves it out of his theory and is satisfied with an approximation. This omission has little oonsequence for the firm dealt with in this study. It has been reluotent to issue equity because it is a family corporation and doesn't want to dilute control.

One problem with the discussion so far is that there oan be relations among the types of debt and among the types of ilquidity. That ia they can be substitutes for one another. This means that there may be some correlation between the dependent variables. For example, if one kind of debt is high and another is low, we might expect less accumulation of the former and more of the latter. The same
could be true for liquidity. Due to feedback in $t+1$ from What the debt and inquidity were at the end of there may be some revisions in the structure of debt and liquidity because of regret or some other principle of choice. Consequently, in the statistical model in the next chapter, this feedback will be included as independent variables as well as the independent variables of this ohapter. Feedback will be included in the analysis by regressing the dependent variables on all possible independent variables.

THE STATISTICAL MODEL AND THE HYPOTHESES

The purpose of this chapter is twofold. Pirst, a statistical model for firms in general and a specific model for the firm of this study will be presented. Second, the values the estimators of the impact of the independent variables With respect to the various dependent variables will be hypothesized.

The Ceneral Statistical Model
The first assumption made in order to get a model for firms in general is that the impact of the independent variables on the dependent variables is inear. The general form of the statistical model is
(4-1) $\quad y_{t(r)}=\beta_{1(r)} x_{1 t}+\beta_{2(r)} \Delta A_{c_{t}}+\beta_{3(r)} I_{t}+\beta_{4(r)}{ }^{R E D_{t}}$

$$
\begin{aligned}
& +\beta_{5(r)^{c_{t-1}}}+\beta_{6(r)^{s} t}+\beta_{7(r)^{G_{t-1}}}+\beta_{8(r)^{T} a_{t}} \\
& +\beta_{9(r)^{D} s_{b_{t-1}}}+\beta_{10(r)^{D} s_{o_{t-1}}+\beta_{11(r)^{2}}}+\beta_{12(r)}{ }^{D_{L_{t-1}}}+\beta_{13(r)^{T A S_{t-1}}}+\beta_{14(r)^{1}} \\
& +\beta_{15(r)^{D}}{ }^{D i v_{t+1}}+u_{t(r)},
\end{aligned}
$$

where:

$$
\begin{aligned}
Y_{t(r)}= & \text { the perticular value of the } r \text { th dependent } \\
& \text { variable in the } t^{t h} \text { period, } \\
X_{1 t}= & 1 \text { for all } t \text { and } r,
\end{aligned}
$$

$$
\begin{aligned}
& \beta_{1(r)}=\text { the intercept of the } r^{\text {th }} \text { dependent var- } \\
& \text { table, } \\
& \beta_{2(r)} \cdots \beta_{15(r)}=\text { the coefficients of the end } \\
& \text { through the } 15^{\text {th }} \text { independent } \\
& \text { variables for the } r^{\text {th }} \text { depend- } \\
& \text { end variable, } \\
& u_{t(r)}=\text { the error term in period } t \text { for the } r^{\text {th }} \\
& \text { dependent variable, and the rest of the } \\
& \text { variables are as previously defined. }
\end{aligned}
$$

Other assumptions which are mede are:
$(4-2) \quad \mathbb{E}\left(u_{t(r)}\right)=0$,
(4-3) $\quad \mathbb{E}\left(u_{t(r)}{ }^{2}\right)=\sigma_{(r)}^{2}$, and
(4-4) $\quad E\left(u_{t_{1}}(r)^{u_{t_{2}}(r)}\right)=0$ where $t_{1} \neq t_{2}$.
Also the distribution of $u_{t(r)}$ is assumed to be normal with mean 0 and variance $\nabla_{(r)}^{2}$. In addition it is assumed that the independent variables are fixed and have no probability distribution. Finally, it is assumed that there are no exact linear relations between any of the independent variables (10).

The Specific Statistical Model

Equation 4-1 is the statistical model for testing the theory over many firms. This model requires some modifioa-
tions before it can be used for a single firm. $\beta_{14(r)}$ will not be estimated because the firm has used government securities only sparingly. Beoause of this, it was thought that it would not be worthwhile to test ΔG_{t} as a dependent variable. Moreover, the lending rate, i_{t}^{\prime}, was to have its greatest impact on goverament securities and is of ilttle use if ΔG_{t} is not being tested. However, it was decided to leave G_{t-1} in the model in order to see if there is any relation between Δc_{t} and $G_{\mathrm{t}-1}$. It costs much less to put in an extra independent variable than to test an extra dependent variable. $\beta_{15(r)}$ will not be estimated because the firm has paid no dividends over the period in consideration. The variable $D_{1 v_{t+1}}=0$ for all t.

The variables $T A S_{t-1}$ and $D_{L_{t-1}}$ are independent variables in the general model. Both will affect the same dependent variable. Anderson has found that the correlation coefficient between the two $1 s$ usually very high and because of this he finds it useful to coubine the two into a single variable called long-term debt apacity (1, p. 48). This is formulated by

$$
(4-5) \quad \mathrm{K}_{\mathrm{t}-1}=\mathrm{v}\left(\operatorname{TAS}_{\mathrm{t}-1}\right)-\mathrm{D}_{\mathrm{L}_{\mathrm{t}-1}} \text {. }
$$

where:

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{t}-1}=\text { long-term debt capacity, and } \\
& \mathrm{v}=\mathrm{a} \text { constant such that } .10 \leq \mathrm{v} \leq .30 .
\end{aligned}
$$

The constent v ie used beosuse of the debt $22 m 1 t$ that seam to exist with jost firwe. This debt 21ait most frequently 12 es between .10 and .30 of total assete ($1,5.43$), For this firm 2t was arbstrarliy deolaed to set $v=.20$ for ease of caloulation and because thas was felt to be a realLetic value of vor this flrw. The ocefflciont which measures the ampeot of π_{t-1} is equal to $\frac{\beta_{13(r)}}{\beta_{12(r)}}$ and w112 be denoted by $\beta_{12(r)}$.

The specific model for this flrw will thus be:
(4-6)

$$
\begin{aligned}
& y_{t(r)}=\beta_{t(r)^{2}} x_{t t} * \beta_{2(r)} A_{c_{t}}+\beta_{3(r)^{x_{t}}}+\beta_{l(r)}{ }^{R E D} D_{t} \\
& +\beta_{5(r)} c_{t-1}+\beta_{6(r)^{s} t}+\beta_{7(r)}{ }^{0} t-1+\beta_{8(r)^{T}} a_{t} \\
& +\beta_{9(r)^{D}{ }_{\mathrm{E}_{\mathrm{b}}}-1}+\beta_{10(r)^{D_{s}}{ }_{\mathrm{O}_{t-1}}}+\beta_{11(r)^{1} t-1}
\end{aligned}
$$

for the $t^{\text {th }}$ time period and the $r^{\text {th }}$ dependent variable.
The data avaliable for the fira are given monthiy for the years, 1956-1964. Thus $t=1,2,3, \ldots, 108$, where $t=1$ corresponds to Jamuary of 1956 and $t=108$ oorresponde to December of 1964. It was decsded to regreas Equation 4-6 on only aeven dependent varlables, Hence, $r=1,2,3, \ldots$, 7.

The seven dependent variables to be used are:
(1) $\Delta \mathrm{D}_{\mathrm{S}_{4}}$
(2) $\Delta D_{\mathrm{S}_{\mathrm{Ot}}}$
(3) $\Delta D_{L_{t}}$
(4) ΔC_{t}
(5) $\Delta \mathrm{D}_{\mathrm{s}_{\mathrm{b}_{\mathrm{t}}}}+\Delta \mathrm{D}_{\mathrm{s}_{\mathrm{o}}}$
(6) $\Delta D_{t}=\Delta D_{s_{\mathrm{b}_{\mathrm{t}}}}+\Delta D_{\mathrm{s}_{\mathrm{O}_{\mathrm{t}}}}+\Delta D_{\mathrm{L}_{\mathrm{t}}}$
(7) $\quad B_{t}=\Delta D_{s_{\mathrm{b}_{\mathrm{t}}}}+\Delta D_{\mathrm{s}_{\mathrm{o}}}+\Delta D_{\mathrm{L}_{\mathrm{t}}}-\Delta \mathrm{C}_{\mathrm{t}}-\Delta \mathrm{D}_{\mathrm{t}}$.

The last dependent variable has little additional to offer after the first six. It will be used only as a check on the model to see if the model measures B_{t} to any extent. Little of the results will be displayed for B_{t} because ΔD_{t} and Δt_{t} are the variables of interest.

The Hypotheses

The hypotheses will be taken one at a time, spelling out the antiolpated effect of each independent variable. In a. few cases the specific role of the independent variables won't be discussed if the case seems to follow prior cases.

The chance in short-term bank debt

The first three independent variables, $\Delta A_{\mathrm{o}_{t}}, I_{t}$, and RED_{t} are the components of $B_{t} . \Delta A_{c_{t}}$ enters B_{t} being positive so its coefficient should be positive. The same
should be true for I_{t}, although its impact on short-teris bank debt is questionable because it may have most of its effect on long-term debt. That $1 s$, long-term debt is generally used to acquire long-term or fixed assets. $R E D_{t}$ is negative in B_{t}, so it should have a negative coefficient, although there is some possibility of its having a positive coefficient because the firm may become more optimistio as profits rise. The firm would in this case increase ite assets and hence acquire more debt.

The variable C_{t-1} should have a negative coerfioient because the higher are cash and liquidity, the less need there is to borrow more ash. St should have a positive coefficient because as sales go up the transactions demand for the oash should rise. To get this oash the firm may have to borrow from a bank.

The higher is G_{t-1}, the more iiquidity the firm has and the less need it has for more. It should consequently have a negative coefficient. Ta indicated a need for iiquidity. One way to get this ilquidity is to borrow it from a bank. $T_{a_{t}}$ should therefore have a positive coefficient. $D_{s_{b_{t-1}}}$ should be a very important element of the equation since the higher it is the more risky is any addition to it. This should make it have a negative coefficient. The same reasoning could be true for $\mathrm{D}_{\mathrm{s}_{\mathrm{Ot}}}$ because the higher is $\mathrm{D}_{\mathrm{s}_{\mathrm{O}_{\mathrm{t}}}}$
the larger is D_{t-1}. However, it may be that the types of debt are substitutes for one another so that the 81 gn of the coefficient is questionable. This may happen if $\mathrm{D}_{\mathrm{s}_{\mathrm{Ot}-1}}$ is high and the firm feels a larger $\Delta D_{s_{b_{t}}}$ is preferable to adding any more short-term other debt.

The higher is the interest rate the higher is the cost of borrowing. The variable i_{t-1} should therefore enter with a negative coefficient. The last variable, K_{t-1}, has a doubtful impact because of the substitutibility of long-term debt and short-term debt. The final result depends a lot on whether the firm uses the debt limit on all debt or just on long-term debt. Consquently, no specifications can be made concerning its effect on $\Delta D_{g_{b_{t}}}$.

The change in short-ter other debt

The impact of the independent variables on short-term other debt should be about the same as on $\Delta \mathrm{D}_{\mathrm{s}_{\mathrm{b}}}$ with only a few exceptions. The first exception is the effect of $D_{s_{b_{t-1}}}$. As the effect of $D_{s_{o t-1}}$ on $\Delta_{s_{b_{t}}}$ is questionable so is the effect of $D_{s_{b_{t-1}}}$ on $\Delta_{s_{O_{t}}}$. Thus, no specification as to the impact of it will be made. In estimating $\Delta \mathrm{D}_{\mathrm{s}_{\mathrm{O}_{t}}}$, though, $D_{s_{O_{t-1}}}$ should have a negative 1mpact since the greater is debt of this type outstanding, the more risky is additional debt of that type. With these exceptions, the
results should be approximately the ame as for $\Delta D_{b_{t}}$.

The change in long-term debt

$\Delta_{C_{t}}, I_{t}$, and $R E D_{t}$ should have much the same coefficients for $D_{L_{t}}$ as for $D_{s_{b_{t}}}$ and $D_{S_{\rho_{t}}}$. The exceptions are that I_{t} w111 probably be stronger here and $\Delta_{c_{t}}$ weaker, because it is expected that current accounts have more impact on short-term debt, and that fixed assets accounts have more impaot on long-term debt.
C_{t-1}, S_{t}, and a_{t-1} should have impacts in the same $s 1 \mathrm{gn}$ but with less magnitude than on changes in short-term debt. The effects of $D_{s_{b_{t-1}}}$ and $D_{s_{0_{t-1}}}$ are questionable beasuse D_{L} may be a substitute for each but over time they all may grow together. In estimating $\Delta D_{I_{t}}, 1_{t-1}$ may have a negative impact, although the interest rate used is the rate on commercial bllis and striotly apeaking should have more relevance for short-term debt. The last variable, \mathbb{K}_{t-1}, should have a strong impact in the equation because it is a meazure of long-term debt capacity. The smaller is the oapacity the smaller is the abllity to acoumulate more long-term debt, so It should enter with a positive coefficient.

The change in cash

B_{t} should have a negative effect on Δc_{t} because it has generaliy been positive and Δ_{t} should decrease to satisfy
$B_{t}=\Delta D-\Delta L . \Delta A_{c_{t}}$ and I_{t} are positive components of B_{t} so should enter with a negative sign. On the other hand, $\operatorname{BED}_{\mathrm{t}}$ is negative and so should enter with a positive algn.
c_{t-1} should have an important effect on Δc_{t} because the larger is cash and the less need there is for more of it. C_{t-1} should enter with a negative sign. S_{t} is also an important variable because it indicates the transactions demand for money. The larger are the transactions, the larger Δ_{t} should be.
a_{t-1} will have a questionable impact because the larger 1t is, the less government securities will be acoumulated. But at the same time Δc_{t} may have to be positive to balance out to equal B_{t}. However, it may be that when G_{t-1} is high there is little need to accumulate more liquidity so cash w111 not increase much. $T_{a_{t}}$ is a ourrent liab1lity and it should turn out that the higher it is the larger is the need for cash to pay it off. Thus, it should enter with a positive coefficient.

The nigher $D_{s_{b_{t-1}}}$ and $D_{s_{o t-1}}$, and the lower is K_{t-1}, the less likely it is the firm will borrow more to acoumulate more cash. The first two should therefore enter with a negative sign and $\mathrm{K}_{\mathrm{t}-1}$ should have a positive sign. The last variable, i_{t}, should have about the same effect on ossh as the three variables just mentioned. This is because a
higher interest rate makes it more expensive to accumulate debt so cash should sccuanlate less or even decumulate in order to meet the requirements of B_{t},

The change in debt in general

The independent variables should have about the same effect on the aggregate as on the indiviaual types of debts. Because of this, the impact of the coefficients will not be discussed in detail. The dependent varlables are $\Delta D_{s_{b_{t}}}+$ $\Delta D_{s_{O_{t}}}$ and $\Delta D_{s_{O_{t}}}+\Delta D_{s_{b_{t}}}+\Delta D_{I_{t}}=\Delta D_{t}$.

The reason for choosing these particular dependent var1ables in the regression equation is to see if there is any substitution among the types of debt. In the aggregate there should occur more actual explanations of the variation than for the indiviaual type of debt since there should be less variation to explain. The less varlance there 1 s , of course, the less variance the estimator w1ll take on, and consquently confirmation of the results from the previous regressions will be obtained.

REGRESSION RESULTS

The Dependent Variables
The F-test was used to test the hypothesis that all the β^{s}, or coefficients of the independent variables, are equal to each other and equal to 0 . For all $s i x$ of the dependent variables, the value of F was large enough to reject the hypothesis that coefficients are all equal to 0 . The F-value with 11 and 96 degrees of freedom at the . 05 level is 1.90 . The F ratios from the regression were $30.7747,2.252$, $7.370,9.84,33.85$, and 26.727 for $r=1,2,3, \ldots, 6 \mathrm{re-}$ spectively. Table 2 lists these values of the regression results.

Table 2. $F^{1} s$ and $B^{21} g, t=1,2,3, \ldots, 108$

$r=1$	$r=2$	$r=3$	$r=4$	$r=5$	$r=6$
$\mathrm{~B}^{2}$.7747	.2051	.4508	.5300	.7950
	30.0097	2.2523	7.3700	9.8434	33.8512

Overall, the statistical model explained much of the variation in most of the dependent variables. One exception was the variation of the changes in short-term other debt. Here the multiple correlation coeffiolent was only . 2051. The actual and estimated values of $\Delta D_{s_{0 t}}$ are shown in Figure 14. This poor result was to be expeoted beaause it was felt that other factors not related to the Pirm could influence this strongly. One of these factore mentioned above was the desire of the owners to diversify their personal portfolios.

The s^{2} of the changes in short-term bank debt was .7747. This means that about .77 of the variation was due to regression. The results of the regression as compared With the actual values of $\Delta \mathrm{s}_{\mathrm{b}_{\mathrm{t}}}$ are shown in plgure 13. The result of $\Delta D_{s_{b_{t}}}+\Delta D_{s_{0 t}}$ was surprising. This is shown in Figure 17. The correlation coefficient between the two as shown in Table 4 was only .0271, indloating that they were substitutes only to a small degree. However, the H^{2} for the sum of the two was higher than for either alone.

The R^{2} of $\Delta \mathrm{D}_{L_{t}}$ was .4578. This indioates that the model explained about half of the variation. The regression With the estimates of $\Delta D_{L_{t}}$ are show in Figure 15. One reason for the low multiple correlation coefficient may be that the period of a month considera too much variation Which is irrelevant to ${\Delta D_{L_{t}}}$. Perhaps deseasonalized var-

1ates would do a better job of indicating the sensitivity of $\Delta_{\mathrm{L}_{\mathrm{t}}}$ to partioular variates.

The explanation of Δ_{t} was not high as shown in Figure 16. The \mathbb{R}^{2} was .53005. This is not as good as one might hope for a varlate like cash. However, these results should be tempered by some of the factors mentioned in the digression on cash balances above.

The partial correlation coefficient between $\Delta_{s_{b_{t}}}$ and $\Delta_{L_{t}}$ was very smali. Apparently the use of the one debt does not depend much on the use of the other; they are more or less independent of one another. The partial correlation coerpicient between $\Delta D_{\text {sot }}$ and $D_{L_{t}}$ is also very small. The regression of $\Delta \mathrm{D}_{\mathrm{b}_{\mathrm{t}}}+\Delta \mathrm{D}_{\mathrm{s}_{\mathrm{ot}}}$ and $\Delta \mathrm{D}_{\mathrm{s}_{\mathrm{b}_{\mathrm{t}}}}+\Delta \mathrm{s}_{\mathrm{s}_{\mathrm{t}}}+\Delta \mathrm{D}_{\mathrm{I}_{\mathrm{t}}}=\Delta \mathrm{D}_{\mathrm{t}}$ are shown in Pigures 17 and 18.

The multiple correlation coefficient of the model in its attempt to explain variations in B_{t} was relatively good; .7627. To come extent, however, it merely reflecte the large role played by $\Delta \mathrm{s}_{\mathrm{s}_{\mathrm{b}}}$.

The Bole of the Independent Variebles
Table 3 lists the values of the regression result; the r^{\prime} s or dependent variables are column headings and the independent varlables are row headings. The intersection of the $r^{\text {th }}$ column with the first independent variable has three figures in it. The top figure is the estimated coefficient
or the impact of the independent variable on the $r^{\text {th }}$ dependent variable. The middie pigure is the standard error of the estimated coefficient. The last number is the t-value of the estimate.

The ohange in short-term bank debt
The first two components of $B_{t}, \Delta A_{c_{t}}$ and I_{t}, had positive coefficients. It follows that increases in B_{t} are to some degree ilnanced by short-term debt. The third variable $B E D_{t}$ entered with a positive coefficient, although on a priori grounds it vas assigned a negative coefficient. This may be because the firm feels it can borrot more when its profits go up. $\widehat{\beta}_{6}$ is interesting in shat it was thought that as sales went up the cash required would also increase, leading to an increase in borrowing. The estimate is negative, hovever, indicating that as sales go up short-term debt accumulates at a slower rate or possibly decreases. One possible explanation is that the firm had its assets high for an expected seasonal increase in sales. And as it reached the point of increased sales, it expected a seasonal deorease in sales and lowered assets at that time. It appears as though the firm was lowering assets as sales went up. The important variable it may have been looking at was expected sales rather than actual sales.

It was expeoted that the higher liquidity was in the
Table 3. Estimated coefficients of independent variables where $r=1,2,3, \ldots, 6$ and $t=1,2,3, \ldots, 108$
\rightarrow

$$
\begin{array}{cl}
.6554 & .0032 \\
.0530 & .0130 \\
12.3668 & .2406
\end{array}
$$

$-.0134$
.2793
.1342
2.0811
응
.0151
.3168
.0476

.6725
.0508
13.2370 . .3252

NN
$i=$

 $-.0575$ LOS0 .1235 .1052 4 -.9744
.0980
-9.9409 .0090 .0295 .3033
7950 .4932
.1143
Table 3 (Continued)

	$r=1$	$r=2$	$r=3$	$r=4$	$r=5$	$r=6$
$\mathrm{Tat}_{\text {t }}$. 0514	. 0032	-. 0375	. 0797	. 0598	-. 0202
	. 1220	. 0300	. 0539	. 0442	.1170	. 1330
	. 4216	.1078	-. 6960	1.8050	. 5115	-. 1520
$\mathrm{D}_{\mathrm{sb}_{\mathrm{t-1}}}$	-. 0808	. 0094	. 0190	-. 0233	-. 0746	-. 0915
	. 0520	. 0128	. 0230	. 0188	. 0498	. 0567
	-1.5399	. 7365	. 8262	1.2192	-1.4975	-1.6140
$\mathrm{D}_{\mathrm{O}_{0 t-1}}$.4803	-. 3061	-. 1515	-. 1722	.1473	-. 1263
	$\begin{array}{r}.3422 \\ \hline\end{array}$. 0841	. 1512	. 1239	. 3280	. 3729
	1.4037	-3.6382	1.0015	-1.3902	. 4491	-. 3388
${ }^{1} \mathrm{t}$	8967.17	-12798.687	-16079.202	-1790.4443	-2679.67	-33263.404
	20080.118	4937.5058	8875.3577	7269.1760	19248.226	21882.676
	. 4465	-2.5921	-1.8116	-. 2463	-. 1340	-1.5200
z_{t-1}	. 0083	. 0021	. 1630	.0427	. 0237	. 2540
	. 0889	. 0219	. 0393	. 0322	. 0852	. 0968
	. 0938	1.0125	14.1484	1.3273	. 2785	. 2622

Table 4. Correlation matrix where $t=1,2,3, \ldots, 108$

	Δc^{4}	I_{t}	$\mathrm{BED}_{\mathrm{t}}$	c_{t-1}	s_{t}	a_{t-1}
ΔA_{0}	1.0000					
I_{t}	. 0912	1.0000				
RED ${ }_{t}$. 2679	-. 0278	1.0000			
$c_{\text {t-1 }}$	-. 2777	-. 0615	-. 1663	1.0000		
S_{t}	-. 1285	-. 1062	. 6627	-. 0647	1.0000	
a_{t-1}	.1147	-. 0861	. 0218	-. 2060	-, 1998	1.0000
$\mathrm{T}_{\mathrm{a}_{\mathrm{t}}}$	-. 2606	-. 0951	-. 1699	. 2475	. 1007	-. 4027
$\mathrm{D}_{\mathrm{Sb}_{\mathrm{t}-1}}$	-. 1314	-. 0863	. 5005	. 0127	. 7906	. 4641
$\mathrm{D}_{\mathrm{s}_{0 t-1}}$. 1634	-. 1119	. 0609	-. 2405	-. 1572	. 9046
i_{t}	-. 1189	. 0150	-. 2187	. 1110	-. 1076	-. 1894
$\mathrm{K}_{\mathrm{t}-1}$	-. 2021	-. 1580	. 0843	. 0645	. 2318	. 4710
$\Delta \mathrm{s}_{\mathrm{b}_{\mathrm{t}}}$. 8175	. 2131	. 0670	-. 3442	-. 3212	. 0491
$\Delta \mathrm{S}_{\mathrm{SO}_{\mathrm{O}}}$. 0295	. 0278	-. 1068	. 0095	-. 1991	-. 0766
$\Delta \mathrm{D}_{L_{t}}$	-. 0662	. 5640	-. 1663	-. 0717	-. 1371	-. 0438
Δc_{t}	-. 0868	-. 0595	. 1168	-. 6290	. 1704	. 0123
$\Delta \mathrm{s}_{\mathrm{s}_{\mathrm{b}_{\mathrm{t}}}}+\Delta \mathrm{s}_{\mathrm{s}_{\mathrm{ot}}}$. 8236	. 2191	. 0415	-. 3453	-. 3479	. 0423
ΔD_{t}	.7445	. 3610	. 0252	-. 3656	-. 3197	. 0326
B_{t}	. 7652	. 3732	-. 0038	-. 2085	-. 3639	. 0333

Table 4 (Continued)

	$\mathrm{Ta}_{a_{t}}$	$\mathrm{D}_{\mathrm{s}_{\mathrm{b}}}{ }^{\text {d-1 }}$	$\mathrm{D}_{\mathrm{S}_{\mathrm{Ot-1}}}$	I_{t}	K_{t-1}	$\Delta D_{s_{b_{t}}}$
$\Delta A_{c_{t}}$						
I_{t}						
RED_{t}						
$c_{\text {t-1 }}$						
s_{t}						
c_{t-1}						
Tat_{t}	1.0000					
$\mathrm{D}_{5} \mathrm{~b}_{t-1}$. 2196	1.0000				
$\mathrm{D}_{\mathrm{SOt-1}}$	-. 3783	-. 4438	1.0000			
$1{ }_{t}$.2292	.1268	-. 2529	1.0000		
$\mathrm{K}_{\mathrm{t}-1}$	-. 0354	. 0288	. 4885	.1039	1.0000	
$\Delta \mathrm{s}_{\mathrm{g}_{\mathrm{t}}}$	-. 2095	-. 2967	.1245	-. 2684	-. 0670	1.0000
$\Delta \mathrm{D}_{\mathrm{O}_{\mathrm{t}}}$. 0002	-. 0823	-. 1972	-. 1609	-. 1080	-. 0271
$\Delta D_{L_{t}}$	-. 0602	-.0847	-. 0617	.1239	. 0096	. 0002
Δc_{t}	. 0497	.0947	. 0143	. 0417	-. 0266	.0584
$\Delta \mathrm{s}_{\mathrm{Sb}_{\mathrm{t}}}+\Delta \mathrm{D}_{\mathrm{SO}_{t}}$	-. 2070	-. 3108	. 0995	-. 2895	-. 0777	. 9911
ΔD_{t}	-. 2302	-. 3067	. 0842	-. 2058	-. 1139	.9233
B_{t}	-. 2378	-. 3322	. 0829	-. 2123	-. 1059	. 9075

Table 4 (Continued)

	$\mathrm{D}^{\mathrm{s}} \mathrm{O}_{\text {t }}$	$\Delta \mathrm{L}_{\mathrm{t}}$	Δc_{t}	$\begin{gathered} \Delta D_{\mathrm{s}_{\mathrm{b}_{\mathrm{t}}}} \\ \Delta \mathrm{D}_{\mathrm{s}_{\mathrm{O}_{\mathrm{t}}}}^{+} \end{gathered}$	ΔD_{t}	B_{t}
Δa_{c}						
I_{t}						
$R_{R E D}$						
c_{t-1}						
s_{t}						
$\mathrm{a}_{\mathrm{t}-1}$						
Tat						
$\mathrm{D}_{\mathrm{Sb}_{\mathrm{t}-1}}$						
$\mathrm{D}_{\mathrm{SO}_{\mathrm{O}-1}}$						
1_{t}						
K_{t-1}						
$\Delta^{s_{\mathrm{lb}_{t}}}$						
ΔD_{80}	1.0000					
$\Delta D_{L_{t}}$	-. 0082	1.0000				
Δc_{t}	-. 0390	. 0346	1.0000			
$\Delta \mathrm{D}_{\mathrm{B}_{\mathrm{bt}}}+\Delta \mathrm{D}_{\mathrm{SO}_{\mathrm{t}}}$.1016	-. 0002	.0537	1.0000		
$\Delta \mathrm{D}_{\mathrm{t}}$. 0944	. 2646	.1149	.9315	1.0000	
B_{t}	.1016	. 2559	-. 1277	.9166	. 9701	1.0000

previous period there would be leas desire or need to borrow adaitional funds in the next period. $\widehat{\beta}_{S(1)}$ is consistent with these expectetions. $\hat{\beta}_{\gamma(1)}$, the impact of G_{t-1}, seems also to agree with the expeotations. $\widehat{\beta}_{9(1)}$ is not significantly less than zero. This 20 in agreement with our hypothesis that the higher is $\mathrm{D}_{\mathrm{s}_{\mathrm{t}-1}}$, the more reluctant the firm is to accumulate that debt further.

The last result of importance for $\Delta D_{b_{b_{t}}}$ is as the interest rate goes up, $\Delta D_{S_{b}}$ is larger. This is contrary to the hypothes 1s. What it means is that the firm probably pays iittle or no attention to the interest rate when getting short-terin loans.

The change in short-term other debt

Though the statistical model ala not explain much of the variation of $\Delta \mathrm{D}_{\mathrm{sO}_{t}}$, the effect of one of the independent variablest is interesting. This is the effect of the interest rate. It was anticipated that as the interest rate increased it might be an indication of a tightening of credit as well as a rise in the cost of borrowing. If credit is less avallable, then the owners should have to go to their own pockets to finance the firm assuming profitable uses for adaltional funds exists. In this case the regression analysis says that this aoes not happen but that the firm looks at the higher interest rate and decreases short-
-term other debt as 1 inoreases.

The change in $10 n=$-term debt

Three variables seem to play an important role here. The first is I_{t}, which was expected. In this case the t-value was 7.36 indicating its coefficient was greater than zero. This means that this part of B_{t} seems to have a positive influence on $\Delta D_{L_{t}}$.

The seoond important variable is the interest rate. As the interest rate goes up long-term debt accumulates at a slower rate. This is as was hypothesized.

The last important variable 1玉 long-term debt capaoity. The larger is K_{t-1}, the larger is long-term debt acoumulation. These three variables are the ones which it was hypothesized would have the largest effeot on $\Delta_{L_{t}}$.

The change in cash balances

The explanatory value of the model on Δ_{t} was only falr. The \mathbb{R}^{2} was .53 , yet, as in the above dependent variables, certain variables played a quite significant role. The first important variable is $\Delta A_{c t}$. B_{t} always has to equal $\Delta D-\Delta t$. This means that $\Delta A_{c_{t}}$ should have a negative impact on cash accumulation because $\Delta A_{c_{t}}$ is usually a positive component of B_{t}. A positive $\Delta_{O_{t}}$ does, in fact, produce a negative Δ_{t} in this firm.

The most significant variable for predicting Δc_{t} was cash at the end of the previous period. The higher the cash balances the less tendency there was to increase oash in the subsequent period. It was hypothesized that this would result because only a certain amount of cash would be necessary at a given time. Anymore cash would tend to be redundant and the firm could earn a higher return elsewhere on it.

Another important variable was the acoruea tax liabilIty at the end of t. It appears that the higher is the tax ilability the larger is Δ_{t}. This is consistent with the hypothesis.

The change in debt in general

The two dependent variables which are sums of specific types of debts have about the same results as for the individual debts. The only differences were mentioned at the beginning of the chapter.

A Qualification to the Fesults
The data on which the regression was run has one qualifloation. The firm had no reoords for the month of Jenuary and February as individual units. Instead the information of these two months was grouped together. In order to get monthly information for these two months, all changes from

December 31 to February 28 were divided into two equal parts; one part being called the change in Jonuary and the other part being called the change in February. Stook varLables were determined for the end of January by taking an average of the December $31^{\text {st }}$ value and the Februery $23^{\text {th }}$ value.

Since it is possible that this might have influenced the results in a manner inconsistent with the information of the other months, it was decided to run the regression on the data omitting the information in January and February. These results are contained in Appendix C. No significant differences were obtained by deleting the information for January and Pebruary.

 TIME
Figure 14. The change in short-term other debt

CONCLUSION

It is apparent that the statistical model does explain debt and ilquiaity except where it was expected that the dependent variable might be a function of variates outside the firm. The only dependent variable where the \mathbb{E}^{2} was surprisingly low was the change in long-term debt. It appears that the model and theory do not give as good as explanation as they might for this variable.

A diffioulty of the model is its assumption of linearity. It might be that a non-linear model would explain the role of some of the variates better. This would be especially true of the long-term debt with respect to the capacity variable that was included. The firm may pay 1ittle attention to debt oapacity until it approaches the limit, but then responds greatly.

However, the over-riding difficulty of the study is the suspicious results with respect to sales. Sales and shortterm debt were negatively correlated. Theoretically, this should not be so. It is possible to explain it away but still it sheds some doubt on the vallaity of the model. That is, it brings to mind the prospect of putting any independent variable in and getting a high R^{2} even though the exact role of the independent variable is incorrect, insignificant, or irrelevant.

A sample containing only one firm is too small to test a theory. This study an only be used to point out concern for certain parts of the theory. It would be very interesting to test the theory using several firms and monthly information. If it tumed out that the sales variable again had a negative coefficient, it would call for a reformulation of parts of the theory. It may be possible to substitute expected sales for actual sales and have a more realistic theory.

1. Anderson, W. H. L. Corporate finance and fixed investment. Boston, Division of Research, Graduate School of Business, Harvard University. 1964.
2. Baumol, W1111am J. The transactions demend for money: an inventory theoretic approach. Quarterly Joumnel of Economios 66: 545-56. 1952.
3. Blerman, Harold, Jr. and Smidt, S. The capital budgeting decision. New York, N. Y., The Macmillan Company . c1960.
4. Donaldson, G. Corporate debt capacity. Boston, Division of Research, Harvard Business School. 1961.
5. Duesenberry, James S. Business oycles and economic growth. New York, $\mathbb{N} . Y_{.}$, MoCrav-H111 Book Co., Inc. 1958.
6. Federal Reserve System. Financing small business: report to the Committee on Banking and Currency and the Seleot Committee on Small Business, U. S. Congress, parts 1 and 2 . Weshington, D. C., U. S. Government Printing office. 1958.
7. Finencial and business statistics. Federal Reserve Bulletin 42-50. 1956-1964.
8. Prazier, W. J. The finanoial struoture of manufacturing corporations and the demand for money: some empirical findings. Journal of Political Economy 72. 1964.
9. Johnson, Robert W. Finanoial management. 2nd ed. Boston, Allyn and Bacon, Inc. c1962.
10. Johnston, J. Econometric methods. New York, N. Y., McGraw-H111 Book Co., Inc. e1960.
11. Keynes, John M. The general theory of employment, Interest, and money. New York, N. Y., Harcourt, Brace, and Co. 1936.
12. Lintner, J. Distribution of incomes of corporations among dividends, retained eamings, and taxes. American Economic Review 46: 97-113. 1956.
13. Iintner, J. Finanoing of corporations. In Mason, E, S., ed. The corporation in modern society. pp. 166-201. Cambridge, Mass., Harvard University press. 1960.
14. Luce, R. Duncan and Raiffa, H. Games and deoisions. New York, N. Y., John W11ey and Sons, Inc. c1957.
15. Meltzer, A. H. The demand for money: a cross-section study of business firms. Quarterly Journal of Economics 77: 405-22. 1963.
16. Mock, Edward J., ed. Feadings in financial management. Soranton, Pennsylvania, Intemational Textbook Company. e1964.
17. Payne, W. F. Industrial demands upon the money market, 1919-57: a atudy in fund-flow analysis. National Bureau of Economic Research, Inc. Teohnical Paper 14. 1961.
18. Solomon, E. The management of corporate cepital. Glencoe, Illino1s, The Free Press of Glencoe. 1959.

ACKNOWLEDGMENT

Little could have been done without the tremendous cooperetion and efforts of others to essist in this stuad.

I owe special thanks to Dr. Dudley Luckett who supervised this study and helped in many ways to make it logical and complete. It is impossible to list the many times he pointed out weaknesses of the writing and suggested improvements.

In addition I wish to thank Mr. James M . Hoak of Des Moines, Iowa who directed me to the firm which allowed its records to be the data for this study. Also the management of that firm deserves a thank-you for giving full and cooperative access to its records.

Pinally, I appreciate the tolerance and helpfulness of my wife, Jane, who sometimes inspired me to complete the study. Little of it could have been done without her inspiration and assistance.

APPENDIX A

Glossary of Symbols Used
$A P_{t}=$ accounts payable at the end of t
$B_{\text {con }}=$ controllable pert of B
$B_{t}=$ net non-financial flow during t
$B T_{t}=$ business transactions affecting cash during t
$B_{\text {ucon }}=$ uncontrollable part of B
$C_{t}=$ eash at the end of period t
$c_{t}^{*}=$ neoessary cash at the end of t
$\mathrm{CB}_{\mathrm{t}}=$ capital budget during t
$\mathrm{CSO}_{t}=$ cost, selling, and other expenses during t
$\mathrm{D}_{\mathrm{Sb}_{t}}=$ short-term debt owed to banks at the end of t
$\mathrm{D}_{\mathrm{So}_{\mathrm{O}}}=$ short-term debt owed to others at the end of t , usually officers and stookholders
$D_{s_{t}}=$ short-term debt outstanding at the end of t
Dep $_{t}=$ depreciation during t
Divt $=$ dividends payable in t
$D_{L_{t}}=$ long-term debt outstanding at the end of t
$D^{*}=$ safe debt
$D_{L_{t}}=$ safe long-term debt in t
$D_{S_{b_{t}}}^{\#_{D}}=$ safe short-term bank debt in t
$D_{S_{\text {Ot }}}^{\frac{s}{}}=$ safe short-term other debt in t
$\Delta A_{c_{t}}=$ the change in ourrent non-financial assets during t
minus the change in current non-financial liabilities during t

```
DD}=\mathrm{ equilibrium value of }\Delta\mp@subsup{D}{t}{
\Deltat}=\mathrm{ equilibrium value of }\Delta\mp@subsup{u}{t}{
\Deltax}\mp@subsup{\textrm{t}}{\textrm{t}}{}=\mathrm{ change in }\textrm{X}\mathrm{ during }
    ES
    G}=\mathrm{ govermment securities at the end of }
    G}\mp@subsup{|}{t}{*}=\mathrm{ necessary government securities
    It = net investment during t
    Inv = Inventory at the end of t
    I&A = Investments and advances at the end of t
    IPS
    It = liquidity at the end of t
    L* = necessary to I1quidity
    NM}=m\mathrm{ money market transactions during t
    NFA
    NSOI 
    O A = \text { other assets at the end of t}
    OA *}=\mathrm{ other assets at the end of t excluding I&A t
    OB}=\mathrm{ operating budget during t
    OCAt = other current assets at the end of t
    OCA *}=\mathrm{ other current assets at the end of t exoluding
        TE}\mp@subsup{t}{t}{}\mathrm{ and }\mp@subsup{\textrm{Inv}}{t}{
OCL}\mp@subsup{L}{t}{}=\mathrm{ other current liabilities at the end of t
```


94

PIT $_{t}=$ provision for income tax during t
$R E D_{t}=$ retained earning during t or transfer to earned surplus during t
$R I T_{\mathrm{t}}=$ reserve for income taxes at the end of t
TRt $=$ trade receivables at the end of t

95

APPENDIX B

Transactions Affecting Cash

Table 5. Transaotions affecting cash, 1947-1964

	1947	
	Payments	Recelpts
Business transactions		
Operating budget		
Receipts from oustomers		4411203
Produotion payments	4120273	
Income tax payments	44148	
Dividends	11360	
other current assets		
Subtotal	4175782	4411207
Subtotal difference		235421
Cap1tal budget		
Investments \& advances		5411
Expenditures on fixed assets	61568	
Expenditures on other assets		81
Subtotal	61568	5492
Subtotal difference	56076	
Total business transactions	4237349	4416699
Difference		179345
Money-market transactions Governatent seourities		
Notes payable-bants	161980	
Notes payable-other		10000
Long term liabilities		10000
Issued and paid-in surplus		14292
Total money-market transaotions	161980	24293
Difference	13768	
Total payments and receipts	4399329	4440992
Effect on eash	41658	

1948
Payments Recelpts

Business transactions

Operating budget
Recelpts from oustomers
Production payments
Income tax payments Dividends
Other current assets

Subtotal

Subtotal aifference
5550282
5558442
5448738
89064
12480
5558446
apital budget
Investments \& advences
Expenditures on fixed assets 79467
Expenditures on other assets 2885
Subtotals 82351 8159

Subtotal difference 82052
Total business transactions 5632633
Difference 73894
Money-warket transactions
Government securities
Notes payable-banks 65000
Notes payable-other
Long term ilabilities
Issued and paid-in surplus 29812
Total money-market transactions 125164
Difference
125164
$\begin{array}{crr}\text { Total payments and recelpts } & 5632633 & 5683903 \\ \text { Effect on ash } & 51271 & \end{array}$

Table 5 (Continued)

1949
Payments Receipts

5605443
5434760
77023
12480

5524263
5605443
81179
Capital buaget
Investments \& suivances
Expenditures on fixed assets
Expenditures on other assets
Subtotala
Subtotal alfference
Totel business transactions
Difference
Money-market transactions
Govemment securities
Notes payable-banks
Notes payable-other
Long term 11ab1lities
Issued and pald-1n surplus
Total money-market transactions
Difference
Total payments and recelpts
Effect on cash

8320
130071

138391
136757
5662655
5608077
54578

55000
27948

27948
27940
5717655
5636025
81630

	1950	
	Payments	Becelpts
Business transaotions		
Operating buaget		
Aecelpts from customers		6666666
Production payments	6745863	
Income tax payments	94873	
Dividends	12480	
Other current assets		
Subtotal	6853216	6666666
Subtotal difference	186550	
Capital budget		
Investments \& advances		4213
Expenditurea on fixed aseets	115507	
Expenditures on other assets	2362	
Subtotals	117869	4213
Subtotal alfference	113657	
Total business transactions	6971086	6670879
Difference	300196	
Money-market transactions		
Notes payable-banks		330666
Notes payable-other	38450	
Long term 11abilities		
Issued and paid-in surplus		
Total money-market transactions	38450	330666
Difference		292216
Total payments and receipts	7355586	7001545
Effect on eash		7991

Table 5 (Continued)

1951
Payments Recelpts
Business trensactions
Operating budget
Reoelpts from customers
Production payments
Income tax payments Dividends
Other current assets
Subtotal
7271690
7489896
Subtotal difference
Capital budget
Investments \& advances
9577
84163

93741
91300
Total business trensactions 7365432
7492338
Difference 126905
Honey-market transactions Goverament seourities
Notes payable-banks
Notes payable-other
Long term 11abilities Issued and paid-1n surplus

Total money-market transactions
Difference
Total payments and recespts
Effeat on cash
150666
25250
125416
7516098
7517588
1489

```
Table 5 (Continued)
```

1952
Payments Eece1pts
Business transactions
Operating budget
Recelpts from customers
7688352
Production payments
7447153
Income tax payments
Dividends
Other current assets
Subtotal 75709057688352
Subtotal difference 117446
Capital budget
Investments \& advances
Expenditures on fixed assets
Expenditures on other assets
104573

Subtotala
1045732
4313

Subtotal difference 100093
Total business transactions $\quad 7675478$
Difference
17353
Money-market transactions
Government securities
Notes payable-banks 45000
Notes payable-other
Long term 11ab111ties
Issued and paid-in surplus
$\begin{array}{ll}\text { Total money-market transactions } & 45000 \\ 61200\end{array}$
Difference
16200
$\begin{array}{crr}\text { Total payments and receipts } & 7720478 & 7754031 \\ \text { Effect on cash } & 33553 & \end{array}$

Table 5 (Continued)

	1953	
	Payments	Recelpts
Business trensactions		
Operating budget		
Becelpts from customers		7583943
Production payments	7421748	
Income tax payments	102568	
Dividends		
Other current assets		
Subtotal	7524316	7583943
Subtotal aifference		59627
Cap1tal buaget		
Investments \& advances		25257
Expenditures on fixed assets	95079	
Expenditures on other essets	5	
Subtotals	95084	25257
Subtotal aifference	69827	
Total business transactions	7619401	7609201
Difference	10200	
Money-market transactions Govermment		
Notes payable-banks	12640	
Notes payable-other		28550
Long term liabilities 2850		
Issued and paid-in surplus		
Total money-market transactions	12640	28550
Difference		15909
Total payments and receipts	7632141	7637751
Effeot on cash	5710	

Table 5 (ContInued)

	1954	
	Payments	Recelptz
Business transactions		
operating budget		
Receipts from customers		8060749
Production payments	7956049	
Income tax peymenta	93584	
D1vidends		
Other current assets		
Subtotal.	8049632	8060749
Subtotal difference		11117
Capital budget		
Investment \& advances	17910	
Expenaitures on fixed assets	83975	
Expenditures on other assets		83
Subtotals	101885	83
Subtotal difference	101803	
Total business transactions	8151519	8060831
Difference	90686	
Money-market transactions		
Government seourities	19588	
Notes payable-banks	232360	
Notes payable-other	11500	
Long tern liabilities		360000
Issued and paid-in surplus		
Total money-market transactions	263448	360000
Difference		96552
Total payments and receipts	8414967	8420831
Effect on cash	5865	

	1955	
	Payments	Eecelpts
Business transactions		
Operating budget		
Receipts from oustomers		8469602
Production payments	8260072	
Income tax payments	156738	
DIvidends		
Othor current assets		
Subtotal	8416810	8469602
Subtotal difference		52792
Capital buaget		
Investments \& advances	12529	
Expenditures on fixed assets	122701	
Expenditures on other assets		36
Subtotals	135230	36
Subtotal alfference	135194	
Total business transaotions	8552040	8469638
Difference	32402	
Money-market transaetions		
Government securities	19870	
Notes payable-banks		100000
Notes payable-other tong term 110b112t1es	60000	66650
Issued and paid-1n surplus	60000	
Total money-market transactions	79871	166650
Difference		86779
Total payments and recelpts	8631911	8636288
Effect on cash	4377	

```
Table 5 (Continued)
```

	1956	
	Payments	Rece2pts
Business transactions		
Recelpts from customers		9575884
Proauction peyments	8998719	
Income tax payments	164631	
Dividends		
Other current assets		
Subtotal	9163351	9575884
Subtotal aifference		412533
Capital budget		
Investments \& advances	37297	
Expenditures on fixed assets	241450	
Expenditures on other essets		36
Subtotals	278746	36
Subtotal difference	278710	
Total business transactions	9442097	9575921
Difference		133823
Koney-market transaotions		
Government securities		1930
Notes payable-benks	98506	1930
Notes payable-other	30750	
long term liab11ities Issued and paid-in surplus	44376	12000
Total money-market transactions	173632	13930
Difference	159702	
Total payments and recelpts	9615729	9589851
Effect on cash		25880

Table 5 (continued)

	1957	
	Payments	Recelpts
Business transactions Operating budget		
Recelpts from customers		9710643
Production payments	9609519	
Income tax payments	147650	
D1vidends		
Other current assets		
Subtotal	9757168	9710643
Subtotal dipference	46525	
Capital budget		
Investments \& advances	476117	
Expenditures on fixed assets	100793	
Expenditures on other assets		36
Subtotels	576909	36
Subtotal differenoe	576873	
Total business tranesctions	10334078	9710680
Difference	623698	
Money-market transactions		
Government seourities	1516	
Notes payable-banks		340038
Notes payable-other	55625	
Long term liabilities Issued and pald-in surglus		313918
Total money-market transactions	57141	653956
Difference		596815
Total payments and reoelpts	10391219	10364636
Effect on cash		26583

```
Table 5 (Continued)
```

	1958	
	Payments	Receipts
Business transactions		
Operating budget		
Receipts from customers		11021316
Production payments	10405730	
Income tax payments	220978	
Dividends		
Other current assets		
Subtotal	10626528	11021316
Subtotel difference		394788
Capital budget		
Investments \& advances		73698
Expenditures on fixed assets	131413	
Expenditures on other assets		36
Subtotals	131413	73734
Subtotal difference	57686	
Total business transactions	10757940	11095050
Difference		337109
Money-market transactions		
Government securities		1581
Notes payable-banks	299910	
Notes payable-other		83158
Long term liabilities	97023	
Issued and paid-in surplus	,	1566
Total money-market trensaotions	396933	86306
Difference	310627	
Total payments and receipts	11154873	11181356
Effect on cash	26482	

Table 5 (Continued)

	1959	
	Payments	Recelpts
Susineas transactions		
Operating budget		
Hecelpts from customers		11369938
Production payments	11427492	
Income tax payments		
Dividenat		
Other current assets		
Subtotal	11746212	11369938
Subtotal difference	376274	
Capital budget		
Investment $*$ advances		32207
Expenditures on fixed assets	160998	
Bxpenditures on other sssets	7124	
Subtotals	168122	32207
Subtotal Aifference	135915	
Total business transactions	11914335	11402146
Difference	512189	
Money-market transactions		
Government securities		38400
Notes payable-banks		480100
Notea payable-other	184192	
Long term liabilities		
Issued and paid-in surplus		10920
Total money-market transactiona	184192	704856
Difference		520664
Total peyments and receipts	12098527	12107002
Effect on cash	8475	

Table 5 (Continuea)

	1961	
	Payments	Reoelpts
Business transactions		
Operating budget		
Receipts from customers		12464747
Production payments	12217295	
Income tax payments	166562	
D1vidends		
Other current assets		
Subtotal	12383857	12464747
Subtotal difference		80890
Cap1tal budget		
Investments \& advences	176483	
Expenditures on fixed assets	231500	
Expenditures on other assets	5134	
Subtotals	413118	0
Subtotal difference	413118	
Total business transactions	12796975	12464747
Difference	332228	
Money-market transactions Government securities		
Notes payable-banks		145168
Notes payable-other		32435
Long term liabilities		181216
Issued and paid-in surplue		2020
Total money-merket transactions		360840
Difference		360840
Total payments and recelpts	12796975	12825587
Effect on cash	28612	

Table 5 (Continued)

	1962	
	Payments	Recelpts
Susiness Transactions		
Operating budget		
Becelpts from oustomers		11168662
Production payments	10951430	
Income tax payments		
Dividends		
other current assets		
Subtotal	11203445	11168662
Subtotal difference	34782	
Capital buaget		
Investments \& advances	370697	
Expenditures on fixed assets	69675	
Expenditures on other assets		3781
Subtotals	440371	3781
Subtotel alfference	436590	
Total business transsctions	11654816	11172443
Difference	471373	
Money-market transactions		
Govemanent securities		
Notes payable-banks		245113
Notes payable-other	21844	245113
long teri liabilities Issued and paid-1n surplus		213718
Issued and paid-in surplus	9695	
Total money-market transactions	31540	458832
Difference		427292
Total payments and recelpts	11686356	11631275
Effect on cash		44081

```
Table 5 (Continued)
```



```
Table 5 (Continued)
```

	1964	
	Payments	Beceipts
Business transactions		
Operating budget		
Recelpts from oustomers		12767902
Production payments	12050586	
Income tax payments	204020	
Dividends		
Other current assets		
Subtotal	12254607	12767902
Subtotal difference		513295
Capital budget		
Investments \& advances	174047	
Expenaitures on fixed assets	83465	
Expenditures on other assets		4145
Subtotals	257512	4145
Subtotal alfference	253367	
Total business transactions	12512119	12772046
Difference		259928
Money-market transactions Government		
Notes payable-banks	40000	
Notes payable-other		31452
Long tera liabilities	190000	31452
Issued and paid-in surplue		
Total money-market transactions	230000	31452
Difference	198548	
Total payments and receipts	12742119	12803498
Erfect on eash	61380	

APPENDIX C

Eegression Besults, $t=1,2,3, \ldots, 90$

Table 6. F's and $\mathrm{R}^{2,} \mathrm{~s}$ where $t=1,2,3, \ldots, 90$

	$r=1$	$r=2$	$r=3$	$r=4$	$4=5$	$r=6$
R^{2}	.7470	.3316	.4342	.5732	.7598	.7141
	20.94	3.518	5.443	9.5223	22.426	17.713

6 Estimated coefficients of independent variables where $x=1,2,3, \ldots$, and $t=1,2,3, \ldots, 90$
Table 7.

	10.677	.1909	-. 27476	-2.928	11.2976	9.1748
I_{t}	.268	-. 00065	.3832	-. 0588	.2721	.6615
	.1656	.0329	.0705	.0572	.1610	.1808
	1.618	$-.1984$	5.4371	-1.028	1.6903	3.6588
$R E D_{t}$.1337	.0478	-. 1586	.0997	. 0844	-. 0928
	.3323	.0660	.1414	.1148	.3230	.3628
	4024	.7253	-1.1218	.8679	.2612	-. 2556
c_{t-1}	-.8223	-. 1098	-. 2228	-1.0688	$-.942$	-1.3309
	. 3140	.0623	.1336	.1085	.3052	.3427
	-2.6206	-1.7618	-1.6676	-9.8529	-3.0866	-3.8830
S_{t}	-. 1565	-. 0221	-. .0557	. 0301	-. 1592	-. 1258
	. 0960	. 0191	.0408	.0332	.0933	.1048
	-1.6306	-1.1621	-1.3636	.9078	-1.7059	-1.1998
G_{t-1}	-3.9995	1. 2517	-. 5614	.4965	-2.514	-3.1015
	1.6168	.3209	.688	.5586	1.5715	1.7649
	-2.4736	3.901	-. 8160	.8888	-1.5998	-1.7572

Table 7 (Continued)

	$r=1$	$r=2$	$r=3$	$r=4$	$r=5$	$x=6$
Ta_{t}	.0767 .1518	-.0161 .0301 -.5350	-.0905 .0646 -1.4020			$\begin{array}{r} -.0968 \\ .1657 \\ -.5842 \end{array}$
$\mathrm{D}_{8 \mathrm{~b}_{\mathrm{t}-1}}$	$\begin{array}{r} -.0571 \\ .0645 \\ -.8859 \end{array}$	-.0026 .0128 -.1995	$\begin{array}{r} .0282 \\ .0274 \\ 1.0261 \end{array}$	$\begin{array}{r} -.0161 \\ .0223 \\ -.7218 \end{array}$	$\begin{array}{r} -.067 \\ .0627 \\ -1.0687 \end{array}$	$\begin{array}{r} -.0659 \\ .0704 \\ -.9353 \end{array}$
$\mathrm{D}_{\mathrm{S}_{\mathrm{Ot-1}}}$	$\begin{array}{r} .6953 \\ .4192 \\ 1.6585 \end{array}$	$\begin{array}{r} -.4746 \\ .5 .0832 \\ -5046 \end{array}$	$\begin{array}{r} -.1744 \\ .1784 \\ -.9774 \end{array}$	-.2212 -1.5448	.1826 .4075 .4483	$\begin{array}{r} -.1296 \\ .4576 \\ -.2832 \end{array}$
i_{t}	$\begin{array}{r} 728.48 ? \\ 23428.056 \\ .0310 \end{array}$	$\begin{array}{r} -11167.992 \\ 4649.334 \\ -2.4020 \end{array}$	$\begin{array}{r} -16517.3 \\ 9969.18 \\ -1.6568 \end{array}$	$\begin{array}{r} -5223.41 \\ 8093.84 \\ -.6453 \end{array}$	$\begin{array}{r} -9052.93 \\ 22771.6 \\ -.3975 \end{array}$	$\begin{array}{r} -41147.87 \\ 25573.72 \\ -1.6089 \end{array}$
$\mathrm{K}_{\mathrm{t}-1}$	$\begin{array}{r} -.0233 \\ .1006 \\ -.2314 \end{array}$	$\begin{array}{r} .0517 \\ .0200 \\ 2.5910 \end{array}$	$\begin{array}{r} .1743 \\ .0428 \\ 4.0695 \end{array}$	$\begin{array}{r} .0536 \\ .0348 \\ 1.5426 \end{array}$		$\begin{array}{r} .2741 \\ .1098 \\ 2.4949 \end{array}$

Table 8. Correlation metrix where $t=1,2,3, \ldots, 90$

	$\Delta A_{\text {ct }}$	I_{t}	PED_{t}	c_{t-1}	S_{t}	G_{t-1}
$\Delta M_{c_{t}}$	1.0000					
$I_{\text {t }}$. 0719	1.0000				
$\mathrm{RED}_{\mathbf{t}}$.3906	-. 0246	1.0000			
c_{t-1}	-. 3319	-. 0778	-. 0871	1.0000		
S_{t}	. 0609	-. 0978	.6250	. 0536	1.0000	
Q_{t-1}	.0743	-. 1327	-. 0310	-. 1198	-. 2837	1.0000
Tat	-. 3248	-. 0883	-. 1340	.2592	.2665	-. 4758
$\mathrm{D}_{\mathrm{s}_{\mathrm{b}-1}}$.0643	-.0440	.4508	. 0866	. 6955	-. 5398
$\mathrm{D}_{\mathrm{SO}_{\mathrm{O}-1}}$.1334	-. 1567	. 0186	-. 1826	-. 2424	. 9054
$1{ }_{t}$	-. 1287	-. 0112	-. 2285	.1355	-. 0877	-. 1774
K_{t-1}	-. 1922	-. 1797	-. 0382	.1817	. 0813	.4646
$\Delta^{\text {S }}{ }_{\text {s }}^{b_{t}}$. 8043	.1885	.2065	-. 4394	-. 1313	. 0107
$\Delta s_{\text {sot }}$	-. 0223	. 0659	-. 0015	-. 0520	-. 0318	-. 0593
$\Delta \mathrm{D}_{\mathrm{L}_{\mathrm{t}}}$	-. 1131	. 4944	-. 1927	-. 0701	-. 1342	-. 1199
Δ_{t}	-. 0648	-. 0613	. 0741	-. 6337	.1506	-. 0023
$\Delta \mathrm{D}_{\mathrm{s}_{\mathrm{b}_{\mathrm{t}}}}+\mathrm{D}_{\mathrm{s}_{\mathrm{O}_{\mathrm{t}}}}$.8113	. 2012	.1930	$-.4514$	$-.1404$.0077
ΔD_{t}	.7249	.3283	.1644	-. 4708	-. 1093	-. 0209
B_{t}	.7486	.3469	.1462	-. 3022	-. 1509	-. 0190

Table 8 (Continued)

	$\mathrm{T}_{a_{t}}$	$\mathrm{D}_{\mathrm{s}_{\mathrm{b}_{\mathrm{t}-1}}}$	$\mathrm{DS}_{\mathrm{O}_{t-1}}$	1_{t}	$\mathrm{K}_{\mathrm{t}-1}$	$\Delta D_{s_{b_{t}}}$
$\Delta A_{0}{ }_{t}$						
I_{t}						
RED_{t}						
c_{t-1}						
s_{t}						
$\mathrm{G}_{\mathrm{t}-1}$						
${ }^{\text {a }}$ t	1.0000					
$\mathrm{D}_{8_{\mathrm{b}_{t}}}$.3966	1.0000				
$\mathrm{D}_{\mathrm{ESt-1}}$	-. 4510	-. 5433	1.0000			
1_{t}	.2657	.2036	-. 2257	1. .0000		
$\mathrm{X}_{\mathrm{t}-1}$	-. 0014	-. 1083	. 4889	.1403	1.0000	
$\Delta \mathrm{D}_{\mathrm{s}_{\mathrm{b}_{t}}}$	-. 2881	-. 0913	.1154	-. 2520	-. 11178	1.0000
$\Delta \mathrm{s}_{\mathrm{SO}_{\mathrm{O}}}$	-. 0539	. 0388	-.2474	-. 0301	-. 1131	-.0869
$\Delta \mathrm{I}_{\mathrm{t}}$	-. 0505	-. 0259	-. 1317	.1385	. 0079	-. 0564
Δc_{t}	. 0708	. 0601	. 0120	. 0105	-..0792	. 0955
$\Delta \mathrm{S}_{\mathrm{B}_{\mathrm{t}}}+\Delta \mathrm{S}_{\mathrm{O}_{\mathrm{t}}}$	-. 2937	-.0947	. 0870	-. 2585	-. 1232	. 9920
ΔD_{t}	-. 3130	-. 0892	. 0539	-. 1704	-. 1705	.9157
E_{t}	-. 3320	-. 1051	. 0504	-. 1711	-. 1479	.8983

Table 8 (Continued)

	$\Delta \mathrm{s}_{\mathrm{s}_{\mathrm{Ot}}}$	$\Delta \mathrm{L}_{\mathrm{L}}$	Δc_{t}	$\begin{gathered} \Delta \Delta_{\mathrm{s}_{\mathrm{b}_{\mathrm{t}}}} \\ \Delta \mathrm{~s}_{\mathrm{s}_{\mathrm{Ot}}}^{+} \end{gathered}$	ΔD_{t}	B_{t}
$\Delta a_{c t}$						
I_{t}						
$\mathrm{BED}_{\mathrm{t}}$						
$c_{\text {t-1 }}$						
s_{t}						
a_{t-1}						
$\mathrm{Tat}_{\text {t }}$						
$\mathrm{D}_{\mathrm{sb}_{\mathrm{b}_{t}}}$						
$\mathrm{D}_{\mathrm{S}_{\mathrm{O}} \mathrm{t}^{\text {d }}}$						
i_{t}						
${ }^{\mathrm{E}_{\mathrm{t}-1}}$						
$\Delta \mathrm{s}_{s_{\mathrm{b}_{\mathrm{t}}}}$						
$\Delta \mathrm{S}_{\mathrm{Ot}}$	1.0000					
$\Delta D_{L_{t}}$. 0017	1.000				
Δc_{0}	-. 0204	. 0498	1.0000			
$\Delta \mathrm{D}_{\mathrm{s}_{\mathrm{b}_{\mathrm{t}}}}+\Delta \mathrm{D}_{\mathrm{s}_{\mathrm{ot}}}$. 0336	-. 0556	. 0939	1.0000		
ΔD_{t}	. 0365	. 2139	. 1647	. 9239	1.0000	
Bt	. 0388	. 2032	-. 0992	. 9064	. 9649	1.0000

[^0]: ${ }^{2}$ This money market should not be confused with organized money markets, e.g. the commercial paper market, the cap1tal market, etc.

[^1]: $3_{\text {A }}$ liating of cash transactions for the period 1947-1964 is enclosed in Appendix B.

[^2]: ${ }^{4}$ It is the author's opinion that the firw, more or less, didn't want to be bothered with government securities so sold them for convenience.

